Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporium.

Kaori Matsuyama, Naomi Kishine, Zui Fujimoto, Naoki Sunagawa, Toshihisa Kotake, Yoichi Tsumuraya, Masahiro Samejima, Kiyohiko Igarashi (Corresponding Author), Satoshi Kaneko

    Research output: Contribution to journalArticleScientificpeer-review

    Abstract

    Arabinogalactan proteins (AGPs) are plant proteoglycans with functions in growth and development. However, these functions are largely unexplored, mainly because of the complexity of the sugar moieties. These carbohydrate sequences are generally analyzed with the aid of glycoside hydrolases. The exo-β-1,3-galactanase is a glycoside hydrolase from the basidiomycete Phanerochaete chrysosporium ( Pc1,3Gal43A), which specifically cleaves AGPs. However, its structure is not known in relation to its mechanism bypassing side chains. In this study, we solved the apo and liganded structures of Pc1,3Gal43A, which reveal a glycoside hydrolase family 43 subfamily 24 (GH43_sub24) catalytic domain together with a carbohydrate-binding module family 35 (CBM35) binding domain. GH43_sub24 is known to lack the catalytic base Asp conserved among other GH43 subfamilies. Our structure in combination with kinetic analyses reveals that the tautomerized imidic acid group of Gln 263 serves as the catalytic base residue instead. Pc1,3Gal43A has three subsites that continue from the bottom of the catalytic pocket to the solvent. Subsite -1 contains a space that can accommodate the C-6 methylol of Gal, enabling the enzyme to bypass the β-1,6-linked galactan side chains of AGPs. Furthermore, the galactan-binding domain in CBM35 has a different ligand interaction mechanism from other sugar-binding CBM35s, including those that bind galactomannan. Specifically, we noted a Gly → Trp substitution, which affects pyranose stacking, and an Asp → Asn substitution in the binding pocket, which recognizes β-linked rather than α-linked Gal residues. These findings should facilitate further structural analysis of AGPs and may also be helpful in engineering designer enzymes for efficient biomass utilization.

    Original languageEnglish
    Pages (from-to)18539-18552
    Number of pages14
    JournalJournal of Biological Chemistry
    Volume295
    Issue number52
    DOIs
    Publication statusPublished - 25 Dec 2020
    MoE publication typeA1 Journal article-refereed

    Fingerprint Dive into the research topics of 'Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporium.'. Together they form a unique fingerprint.

    Cite this