Uptake of proline by the scutellum of germinating barley grain

Eila Väisänen, Tuomas Sopanen (Corresponding Author)

Research output: Contribution to journalArticleScientificpeer-review


Scutella separated from germinating grains of barley (Hordeum vulgare L. cv Himalaya) took up 1 millimolar l-[14C]proline at an initial rate of about 6.5 micromoles gram−1 fresh weight hour−1 (pH 5, 30°C). The uptake had a pH optimum at 5. The bulk of the uptake (93%) was via carrier-mediated active transport. All of the 19 l-amino acids tested at 10 millimolar concentration inhibited the mediated uptake of 1 millimolar proline, the inhibitions varying from 18 to 76%. By studying how large a fraction of the mediated uptake was inhibitable by asparagine, alanine, glutamine, and leucine, the mediated uptake was shown to be due to three components. Two of these are most probably attributable to the two nonspecific uptake systems proposed earlier to act in the uptake of glutamine and leucine. The third component was not inhibited by glutamine, asparagine, or alanine, but was inhibited by unlabeled proline and leucine. The uptake by this system was apparently carrier-mediated active transport. d-Proline inhibited this system as strongly as l-proline. Nine of the 16 l-amino acids tested at 50 millimolar concentrations did not inhibit the uptake of 1 millimolar proline by this system. Valine, leucine, isoleucine, and the basic amino acids were inhibitory, but in spite of this, they did not appear to be taken up by this system. It seems therefore that in addition to two nonspecific amino acid uptake systems the scutella have an uptake system which is specific for proline. It is likely that this proline-specific system accounts for the bulk of proline uptake in a germinating grain.
Original languageEnglish
Pages (from-to)902-907
JournalPlant Physiology
Issue number4
Publication statusPublished - 1986
MoE publication typeA1 Journal article-refereed


Dive into the research topics of 'Uptake of proline by the scutellum of germinating barley grain'. Together they form a unique fingerprint.

Cite this