User Experience of Augmented Reality System for Astronaut's Manual Work Support

Kaj Helin (Corresponding Author), Timo Kuula, Carlo Vizzi, Jaakko Karjalainen, Alla Vovk

    Research output: Contribution to journalArticleScientificpeer-review

    5 Citations (Scopus)

    Abstract

    This paper introduces Augmented Reality (AR) system to support an astronaut's manual work, it has been developed in two phases. The first phase was developed in Europeans Space Agency's (ESA) project called “EdcAR—Augmented Reality for Assembly, Integration, Testing and Verification, and Operations” and the second phase was developed and evaluated within the Horizon 2020 project “WEKIT—Wearable Experience for Knowledge Intensive Training.” The main aim is to create an AR based technological platform for high knowledge manual work support, in the aerospace industry with reasonable user experience. The AR system was designed for the Microsoft HoloLens mixed reality platform, and it was implemented based on a modular architecture. The purpose of the evaluation of the AR system is to prove that reasonable user experience of augmented reality can reduce performance errors while executing a procedure, increase memorability, and improve cost, and time efficiency of the training. The main purpose of the first phase evaluation was to observe and get feedback from the AR system, from user experience point-of-view for the future development. The use case was a filter change in International Space Station (ISS)—Columbus mock-up in the ESA's European Astronaut Centre (EAC). The test group of 14 subjects it included an experienced astronaut, EAC trainers, other EAC personnel, and a student group. The second phase the experiment consisted of an in-situ trial and evaluation process. The augmented reality system was tested at ALTEC facilities in Turin, Italy, where 39 participants were performing an actual real astronaut's procedure, the installation of Temporary Stowage Rack (TSR) on a physical mock-up of an ISS module. User experience evaluation was assessed using comprehensive questionnaires, and interviews, gathering an in-depth feedback on their experience with a platform. This focused on technology acceptance, system usability, smart glasses user satisfaction, user interaction satisfaction, and interviews, gathering an in-depth feedback on their experience with a platform. The analysis of the questionnaires and interviews showed that the scores obtained for user experience, usability, user satisfaction, and technology acceptance were near the desired average. Specifically, The System Usability Scale (SUS) score was 68 indicating that the system usability is already nearly acceptable in the augmented reality platform.
    Original languageEnglish
    Article number106
    JournalFrontiers in Robotics and AI
    Volume5
    Issue numberSEP
    Publication statusPublished - 2018
    MoE publication typeNot Eligible

    Fingerprint

    Augmented reality
    Space stations
    Feedback
    Integration testing
    Aerospace industry
    Personnel
    Students
    Glass

    Keywords

    • Augmented Reality (AR)
    • space domain
    • User Experience (UX)

    Cite this

    @article{aae0974aabec4ecca0f62045cfcccfed,
    title = "User Experience of Augmented Reality System for Astronaut's Manual Work Support",
    abstract = "This paper introduces Augmented Reality (AR) system to support an astronaut's manual work, it has been developed in two phases. The first phase was developed in Europeans Space Agency's (ESA) project called “EdcAR—Augmented Reality for Assembly, Integration, Testing and Verification, and Operations” and the second phase was developed and evaluated within the Horizon 2020 project “WEKIT—Wearable Experience for Knowledge Intensive Training.” The main aim is to create an AR based technological platform for high knowledge manual work support, in the aerospace industry with reasonable user experience. The AR system was designed for the Microsoft HoloLens mixed reality platform, and it was implemented based on a modular architecture. The purpose of the evaluation of the AR system is to prove that reasonable user experience of augmented reality can reduce performance errors while executing a procedure, increase memorability, and improve cost, and time efficiency of the training. The main purpose of the first phase evaluation was to observe and get feedback from the AR system, from user experience point-of-view for the future development. The use case was a filter change in International Space Station (ISS)—Columbus mock-up in the ESA's European Astronaut Centre (EAC). The test group of 14 subjects it included an experienced astronaut, EAC trainers, other EAC personnel, and a student group. The second phase the experiment consisted of an in-situ trial and evaluation process. The augmented reality system was tested at ALTEC facilities in Turin, Italy, where 39 participants were performing an actual real astronaut's procedure, the installation of Temporary Stowage Rack (TSR) on a physical mock-up of an ISS module. User experience evaluation was assessed using comprehensive questionnaires, and interviews, gathering an in-depth feedback on their experience with a platform. This focused on technology acceptance, system usability, smart glasses user satisfaction, user interaction satisfaction, and interviews, gathering an in-depth feedback on their experience with a platform. The analysis of the questionnaires and interviews showed that the scores obtained for user experience, usability, user satisfaction, and technology acceptance were near the desired average. Specifically, The System Usability Scale (SUS) score was 68 indicating that the system usability is already nearly acceptable in the augmented reality platform.",
    keywords = "Augmented Reality (AR), space domain, User Experience (UX)",
    author = "Kaj Helin and Timo Kuula and Carlo Vizzi and Jaakko Karjalainen and Alla Vovk",
    year = "2018",
    language = "English",
    volume = "5",
    journal = "Frontiers in Robotics and AI",
    issn = "2296-9144",
    publisher = "Frontiers Media",
    number = "SEP",

    }

    User Experience of Augmented Reality System for Astronaut's Manual Work Support. / Helin, Kaj (Corresponding Author); Kuula, Timo; Vizzi, Carlo; Karjalainen, Jaakko; Vovk, Alla.

    In: Frontiers in Robotics and AI, Vol. 5, No. SEP, 106, 2018.

    Research output: Contribution to journalArticleScientificpeer-review

    TY - JOUR

    T1 - User Experience of Augmented Reality System for Astronaut's Manual Work Support

    AU - Helin, Kaj

    AU - Kuula, Timo

    AU - Vizzi, Carlo

    AU - Karjalainen, Jaakko

    AU - Vovk, Alla

    PY - 2018

    Y1 - 2018

    N2 - This paper introduces Augmented Reality (AR) system to support an astronaut's manual work, it has been developed in two phases. The first phase was developed in Europeans Space Agency's (ESA) project called “EdcAR—Augmented Reality for Assembly, Integration, Testing and Verification, and Operations” and the second phase was developed and evaluated within the Horizon 2020 project “WEKIT—Wearable Experience for Knowledge Intensive Training.” The main aim is to create an AR based technological platform for high knowledge manual work support, in the aerospace industry with reasonable user experience. The AR system was designed for the Microsoft HoloLens mixed reality platform, and it was implemented based on a modular architecture. The purpose of the evaluation of the AR system is to prove that reasonable user experience of augmented reality can reduce performance errors while executing a procedure, increase memorability, and improve cost, and time efficiency of the training. The main purpose of the first phase evaluation was to observe and get feedback from the AR system, from user experience point-of-view for the future development. The use case was a filter change in International Space Station (ISS)—Columbus mock-up in the ESA's European Astronaut Centre (EAC). The test group of 14 subjects it included an experienced astronaut, EAC trainers, other EAC personnel, and a student group. The second phase the experiment consisted of an in-situ trial and evaluation process. The augmented reality system was tested at ALTEC facilities in Turin, Italy, where 39 participants were performing an actual real astronaut's procedure, the installation of Temporary Stowage Rack (TSR) on a physical mock-up of an ISS module. User experience evaluation was assessed using comprehensive questionnaires, and interviews, gathering an in-depth feedback on their experience with a platform. This focused on technology acceptance, system usability, smart glasses user satisfaction, user interaction satisfaction, and interviews, gathering an in-depth feedback on their experience with a platform. The analysis of the questionnaires and interviews showed that the scores obtained for user experience, usability, user satisfaction, and technology acceptance were near the desired average. Specifically, The System Usability Scale (SUS) score was 68 indicating that the system usability is already nearly acceptable in the augmented reality platform.

    AB - This paper introduces Augmented Reality (AR) system to support an astronaut's manual work, it has been developed in two phases. The first phase was developed in Europeans Space Agency's (ESA) project called “EdcAR—Augmented Reality for Assembly, Integration, Testing and Verification, and Operations” and the second phase was developed and evaluated within the Horizon 2020 project “WEKIT—Wearable Experience for Knowledge Intensive Training.” The main aim is to create an AR based technological platform for high knowledge manual work support, in the aerospace industry with reasonable user experience. The AR system was designed for the Microsoft HoloLens mixed reality platform, and it was implemented based on a modular architecture. The purpose of the evaluation of the AR system is to prove that reasonable user experience of augmented reality can reduce performance errors while executing a procedure, increase memorability, and improve cost, and time efficiency of the training. The main purpose of the first phase evaluation was to observe and get feedback from the AR system, from user experience point-of-view for the future development. The use case was a filter change in International Space Station (ISS)—Columbus mock-up in the ESA's European Astronaut Centre (EAC). The test group of 14 subjects it included an experienced astronaut, EAC trainers, other EAC personnel, and a student group. The second phase the experiment consisted of an in-situ trial and evaluation process. The augmented reality system was tested at ALTEC facilities in Turin, Italy, where 39 participants were performing an actual real astronaut's procedure, the installation of Temporary Stowage Rack (TSR) on a physical mock-up of an ISS module. User experience evaluation was assessed using comprehensive questionnaires, and interviews, gathering an in-depth feedback on their experience with a platform. This focused on technology acceptance, system usability, smart glasses user satisfaction, user interaction satisfaction, and interviews, gathering an in-depth feedback on their experience with a platform. The analysis of the questionnaires and interviews showed that the scores obtained for user experience, usability, user satisfaction, and technology acceptance were near the desired average. Specifically, The System Usability Scale (SUS) score was 68 indicating that the system usability is already nearly acceptable in the augmented reality platform.

    KW - Augmented Reality (AR)

    KW - space domain

    KW - User Experience (UX)

    UR - http://www.scopus.com/inward/record.url?scp=85058424365&partnerID=8YFLogxK

    M3 - Article

    VL - 5

    JO - Frontiers in Robotics and AI

    JF - Frontiers in Robotics and AI

    SN - 2296-9144

    IS - SEP

    M1 - 106

    ER -