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Abstract
The smart city infrastructures, such as digital platforms, edge computing, and fast 5G/6G networks, bring new possibilities 
to use near-real-time sensor data in digital twins, AR applications, and Machine-to-Machine applications. In addition, AI 
offers new capabilities for data analytics, data adaptation, event/anomaly detection, and prediction. However, novel data 
supply and use strategies are needed when going toward higher-granularity data trade, in which a high volume of short-term 
data products is traded automatically in dynamic environments. This paper presents offering-driven data supply (ODS), 
demand-driven data supply (DDS), event and offering-driven data supply (EODS), and event and demand-driven data sup-
ply (EDDS) strategies for high-granularity data trade. Computer simulation was used as a method to evaluate the use of 
these strategies in supply of air quality data for four user groups with different requirements for the data quality, freshness, 
and price. The simulation results were stored as CSV files and analyzed and visualized in Excel. The simulation results 
and SWOT-analysis of the suggested strategies show that the choice between the strategies is case-specific. DDS increased 
efficiency in data supply in the simulated scenarios. There was higher profit and revenues and lower costs in DDS than in 
ODS. However, there are use cases that require the use of ODS, as DDS does not offer ready prepared data for instant use 
of data. EDDS increased efficiency in data supply in the simulated scenarios. The costs were lower in EODS, but EDDS 
produced clearly higher revenues and profits.

Keywords  Offering-driven data supply (ODS) · Demand-driven data supply (DDS) · Event and offering-driven data supply 
(EODS) · Event and demand-driven data supply (EDDS) · Data supply simulation · Air quality data

1  Introduction

There is a strong need for smart, sustainable, and energy-
efficient cities. Achieving the United Nations’ Sustainable 
cities and communities Development Goal (SDG 11) (UN 
2022) requires solutions to enhance the decision-making and 
situational awareness in cities. In practice, this requires the 
development of systems-of-systems (Maier 1998) or cyber-
physical systems (Robbins and Tanik 2014) to leverage the 
Data and Processing Capabilities (DPCs) in different kinds 
of systems in cities. This is challenging, as there are mul-
tiple stakeholders of DPCs in cities (Palviainen and Suksi 
2023). Therefore, there is a clear need for data markets that 

motivate data productization and value creation and enable 
efficient use of all kinds of data in a smart city for sustain-
able decision-making.

Some data have obvious value and established uses. For 
example, weather data are produced at the city level and 
sold to many applications via multiple distribution chan-
nels, including media. However, in a smart city, a lot of data 
in finer grain exist without established data markets, and 
data are not productized for other than the primary use. For 
example, air quality might be measured locally by smart 
lighting poles, building automation systems, vehicle air 
conditioning systems, and observed by individuals moving 
in the city. The data are scattered spatially and temporally 
in different formats and are not easily available for routing 
services based on air quality. To utilize these kinds of local, 
short-term, and moving data sources in novel services and 
create new value, we need to go toward higher-granularity 
data trade that includes data from multiple spatial and tem-
poral scales.
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Creating value from data requires fair, secure, and effi-
cient processes for data trade (Liang et al. 2018). There 
should be low market entry and exit costs and low transac-
tion costs in data exchange (Duch-brown et al. 2017) and 
enough actors so that network effects (Fruhwirth et al. 2020) 
are achieved. In addition, there should be mechanisms to 
sell dynamic and frequently updating data for arbitrary ad-
hoc queries (Liu and Hacigümüş 2014). The technological 
development set new requirements for data trade. The role of 
machines is rising in data trade, and it can be envisioned that 
systems such as autonomous vehicles and robots will use or 
supply sellable data, which refers here to data that are pro-
ductized for transactions in data marketplaces. SDGs (UN 
2022) should be achieved in data supply and use, too. The 
use of network and computing capabilities should be opti-
mized to increase profitability and energy efficiency in the 
sellable data supply, delivery, and use. There should be situ-
ational and context awareness in data supply and data use, as 
the data demand depends often on the situation and context. 
For example, in a traffic jam, there is more demand for near-
real-time traffic data that assist in navigation or in searching 
for a parking lot. The robotized data trade increases short-
term supply and use of data in situations where a data source 
is available for only a relatively short time, e.g., when a car 
making air quality observations is driving through a city, and 
the data source can be used only for a limited time. Manag-
ing this dynamism requires increasing the granularity as well 
as situational and context awareness in data trade and novel 
strategies to optimize the sellable data supply and use.

From the literature, there can be found numerous studies 
that have explored increasing of the efficiency, dynamism, 
and flexibility in data trade. The efficiency is attempted 
to be improved by focusing on data markets’ organiza-
tion, trust, interoperability, and sellable data quality in 
data trade. The prior studies have proposed approaches for 
centralized and decentralized data markets (Ramachandran 
et al. 2018; Alvsvåg et al. 2022; Anthony 2023) and for 
local, federated, and domain-specific data markets (Yer-
abolu et al. 2019; Fernandez et al. 2020; Gröger 2021; 
Abbas et al. 2022). There are efforts to build an infra-
structure, rules, principles, and standards for achieving 
trust, interoperability, and data sovereignty in data sharing 
(Eggers et al. 2020). The Identity and Access Manage-
ment (IAM) systems assist guaranteeing of the identity of 
data seller and data buyer (Mangiuc 2012; Ramachandran 
et al. 2018) and the blockchain technologies and smart 
contracts enable completing of transactions in an inexpen-
sive and fast manner (Zheng et al. 2020). The open, stand-
ardized, and interoperable APIs are developed to assist 
collecting and processing of data from different sources in 
smart cities (Robin and Botts 2007; Park 2017; McGrath 
et al. 2019). In addition, there are approaches that enable 
automatic metadata generation for sellable data products 

(Sharma et al. 2020) and tools that assist leveraging of big 
data in the smart city context (Khan and Kiani 2012; Badii 
et al. 2017; Anthony Jnr et al. 2020). The quality control, 
curation, and recommendation systems can be provided 
for sellable data to assist finding of good quality, reliable 
sellable data products in a marketplace (Ramachandran 
et al. 2018; Sharma et al. 2020). In addition, buyers and 
sellers can rate each other in a marketplace that assists the 
buyers to assess the quality of the data product provided 
by a given seller (Ramachandran et al. 2018). There can 
be dynamism in selling, pricing, processing, delivering, 
and using of data. There are dynamic pricing schemes and 
auction processes for data trade (Liang et al. 2018), mech-
anisms to share network capacity based on data demand 
(Lorenzo and Gonzalez-Castano 2016), and approaches 
to price and sell data that is composed for a data user’s 
requirements (Liu and Hacigümüş 2014; Duch-brown et al. 
2017; Fernandez et al. 2020). In addition, flexible terms 
of use, pricing models, and payment options are used to 
increase flexibility in data trade (Liang et al. 2018; Sharma 
et al. 2020).

However, although the above-mentioned studies have 
found ways to enhance efficiency, dynamism, and flexibil-
ity in data trade, there is still a need to increase granular-
ity as well as market, situational, and context awareness in 
sellable data supply and use. This work extends the prior 
studies by introducing novel elements for data trade opti-
mization. First, the Market, Situation, and Context Update 
(MSC)-messages are suggested to deliver fresh information 
about the market, situation, and context changes to enable 
continuous data supply and data use optimization in data 
trade. Second, ODS, EODS, DDS, and EDDS strategies are 
proposed to assist optimization of sellable data supply. On 
this basis, this study sets the following research questions: 
(a) How to increase granularity as well as market, situation, 
and context awareness in sellable data supply and use? (b) 
What kind of benefits and weaknesses relate to the suggested 
ODS, DDS, EODS, and EDDS strategies?

This paper makes the following contributions. First, a 
novel model is presented for high-granularity data trade to 
increase granularity as well as market, situational, and con-
text awareness in data supply and use. Here, market aware-
ness refers to mechanisms that actively optimize data supply 
for demand and data use for data supply. Situational aware-
ness refers to sellable data products that adapt to changes 
in the physical environment, and context awareness means 
data products that adapt to changes in the processing envi-
ronment, like edge processing capabilities, communication 
bandwidth, and electricity price. Second, offering-driven 
data supply (ODS), demand-driven data supply (DDS), 
event and offering-driven data supply (EODS), and event 
and demand-driven data supply (EDDS) strategies are pre-
sented for high-granularity data trade. Third, simulation 
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results and SWOT-analysis of the strategies are given, and 
the requirements that these strategies set for data products 
and marketplaces are discussed.

This paper is organized as follows: Sect.  2 provides 
literature review on related work. The characteristics of 
high-granularity data trade and the ODS, DDS, EODS, and 
EDDS strategies are then discussed in Sect. 3. The research 
methodology is discussed in Sect. 4 before the findings in 
Sect. 5 that discusses the simulation results. The discussion 
and implications are discussed in Sect. 6 and finally conclu-
sions are given in Sect. 7.

2 � Literature review

Data marketplaces can provide metadata descriptions for 
sellable data products and user interfaces and APIs for data 
trade that enable connection of organizations, data streams, 
hardware, and software into opaque and transacting collec-
tions (Taylor et al. 2022). Markets aggregate and express 
the knowledge of market actors (Hayek 1944) and use the 
pricing mechanism to disseminate information, channel 
dispersed resources, and fulfill people’s localized needs 
and make the centralized economic planning unnecessary 
(Taylor et al. 2022). The following subsections focus on the 
drivers of smart city data economy, on data trading and shar-
ing in smart cities, and on the previous efforts to optimize 
efficiency, dynamism, and flexibility in data trade. The final 
subsection presents a summary for the discussed data trade 
optimization approaches.

2.1 � Drivers for smart city data economy

2.1.1 � Urbanization

Since 1950, the number of large cities has increased very 
rapidly, and close to 400 cities now exceed a population of 
one million, and sprawling metropolitan areas have formed 
even larger agglomerations, and some urban regions with 
populations in the tens of millions have emerged (Berry 
et al. 2008).

2.1.2 � Near real‑time data

Delays in the processes that extract, integrate, and deliver 
data for users affect the data freshness that is identified to be 
one of the most significant data quality attributes (Bouzeg-
houb and Peralta 2004). The fast and reliable (e.g., 5G/6G) 
networks offer high uplink and downlink capacities that 
make the fluent delivery of high-resolution sensor data (e.g., 
image or video data) possible. This increases the data fresh-
ness, quality, and volume and makes the data more valuable 
for near real-time applications.

Data freshness can vary in autonomous data sources and 
integrating these data may lead to semantic problems in 
distributed systems (Bouzeghoub and Peralta 2004). The 
measuring of the different dimensions of data freshness can 
be based on the currency metric measuring the time elapsed 
since the source data changed without being reflected in the 
materialized view, on the obsolescence metric measuring the 
number of updates to a source since the data extraction time, 
and on the freshness-rate metric measuring the percentage 
of elements (tuples or attributes) that are up-to-date in data 
(Bouzeghoub and Peralta 2004). In addition, the timeliness 
metric is used to measure the extent to which the age of the 
data is appropriate for the task on hand (Wang and Strong 
1996).

2.1.3 � Digital systems

The following gives examples of systems that could supply 
or use sellable data in cities:

•	 Smart city infrastructures There can be smart urban fur-
niture (Tokuda 2004; Krejcar et al. 2019), smart poles, 
and sensors such as cameras, lidars, and air quality sen-
sors to produce street-level sensor data (Di Vito et al. 
2020). These systems can be connected to marketplaces 
to offer data, edge computing capabilities, and event and 
anomaly detection capabilities (e.g., (Xu et al. 2020) for 
different actors in cities.

•	 Edge computing enables the processing of data at the 
edge of the network, at the proximity of data sources and 
end users, and provides the means to enhance response 
times, energy efficiency, and security in data processing 
(Shi et al. 2016; Hassan et al. 2019). Edge computing can 
be used together with cloud services to process down-
stream data on behalf of cloud services and upstream 
data on behalf of the Internet of Things (IoT) services 
(Shi et al. 2016).

•	 Connected and automated vehicles (CAVs) have a great 
potential to improve road safety, quality-of-life, and the 
efficiency of transportation systems (Elliott et al. 2019). 
CAVs can act as data suppliers, as they can produce sen-
sor data of physical environment and benefit from data 
(e.g., RGB-D data and point cloud data) that is produced 
in the smart city infrastructure or in other vehicles in the 
city.

•	 Robots will facilitate everyday life, manipulate the envi-
ronment, supply services, inspect and maintain infra-
structure, build new structures in a city, or interact with 
citizens (Tiddi et al. 2020). For example, there can be 
assistive robots in homes, robots that participate in the 
business operations of cities, and robots, such as flying 
drones, to gather sensor data in cities (Studley and Little 
2021).
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•	 Smart buildings use IoT sensors, actuators, and solutions 
for building management that can assist in heating, cool-
ing, ventilation, lighting, and water management and help 
increasing the safety ratio and energy efficiency in build-
ings (Verma et al. 2019).

2.1.4 � Near real‑time applications

Situational awareness and prompt decision-making are rel-
evant in complex urban environments. Near-real-time appli-
cations require data products that can be purchased easily 
and quickly, processed without delays, and delivered fast 
to end users—all automatically without manual operations.

2.2 � Data trading and sharing in smart cities

Data are considered as one of the most valuable assets 
that enables creation of data-driven services ranging from 
transportation and safety to health and sanitation to con-
tinually improve the lives of citizens (Docherty et al. 2018; 
Ramachandran et al. 2018). Data are shared as freely avail-
able open data in cities. However, although there is much 
interest around open data and data brokerages, only a small 
amount of available data from cities and public authorities 
are open data and there is a lack of clear use cases to lever-
age on data and develop innovative services for the benefit 
of a community (Alvsvåg et al. 2022).

The European Union (EU) has started to advocate for 
the adoption of open, standardized APIs with interoperable, 
coherent protocols and formats for collecting and processing 
of data from different sources in smart cities (McGrath et al. 
2019). One of the goals is to support interoperability of data-
sets for a thriving smart city data-driven economy that cre-
ates digital innovations and services for sustainable develop-
ment. The data exchange is often based on Representational 
State Transfer (REST) APIs and MQTT (Message Queuing 
Telemetry Transport). The REST APIs allow the dynamic 
pull of data from databases in response to end user’s requests 
or inputs, instead of pushing same static information to every 
user. These APIs are based on the REST protocol (Fielding 
2000) and a stateless procedure which suggest that each call 
comprises of information essential for execution and thus 
does not require status information from prior calls (Kar-
nouskos et al. 2012). MQTT, in turn, is an extremely light-
weight and simple messaging protocol that offers publish/
subscribe mechanisms for data exchange (Anthony Jnr et al. 
2020). MQTT is designed for low-bandwidth constrained 
devices that employs unreliable networks and, for exam-
ple, can be used for connecting energy metering devices in 
energy district due to its small headers and minimum over-
head (Anthony Jnr et al. 2020). Moreover, MQTT can also 

be deployed over Secure Socket Layer (SSL) to implement 
security (Patti and Acquaviva 2016).

Data sharing and trade can relate to big data requiring 
tools to manage volume, velocity, veracity, and variety of 
the data (Khan and Kiani 2012). For example, the physical 
devices in energy districts will produce terabytes of data (Li 
et al. 2017) that can enable forecasting of energy markets, 
detecting usage anomalies for early warning, and offering 
recommendations and guidance for prosumers and energy 
companies (Badii et al. 2017). However, implementation of 
these services requires solutions such as a layered archi-
tecture and APIs presented in Anthony Jnr et al. (2020) to 
provide an access to the real time and historical energy data.

Data are scattered across different platforms in cities, and 
it is hard to find the data and there can be different access 
mechanisms for the data (Alvsvåg et al. 2022). One solution 
to solve this problem is to have a service-oriented and data-
driven IoT software architecture for smart cities (Simmhan 
et al. 2018). Data marketplaces assist in data discovery and 
reuse in cities, offer incentives for data sharing, and enable 
data sellers to create value and perhaps earn money from 
their data (Alvsvåg et al. 2022). Data trade can be based 
on centralized or decentralized data marketplaces in smart 
cities. For example, a smart city data marketplace can be a 
digital platform enabling easy selling, buying, and sharing 
of data that can be Internet of Things (IoT) sensor, citizen, 
and business data from the smart city (Alvsvåg et al. 2022). 
Operators of centralized data marketplaces have significant 
monopoly market power over how data products are pre-
sented to the data consumers (Ramachandran et al. 2018). 
Decentralized data marketplaces minimize this risk of a 
biased marketplace operator that favors certain data suppli-
ers by offering better visibility and rankings for their sellable 
data products. In addition, decentralized trust mechanisms 
such as storing and retrieving metadata and ratings from a 
Blockchain can potentially improve the transparency and 
trustworthiness of ratings (Ramachandran et al. 2018).

2.3 � Methods for data trade optimization

There are developed solutions to increase efficiency, dyna-
mism, and flexibility in data trade. These elements are dis-
cussed in the following paragraphs.

2.3.1 � Efficiency in data trade

The integration of blockchain technology with smart con-
tracts provides a way for finishing transactions in an inex-
pensive and fast manner without the need for a trusted third 
party (Zheng et al. 2020). The smart contracts consist of 
contract clauses that are executed when predefined condi-
tions are met (Zheng et al. 2020). The smart contracts are 
stored to distributed blockchains assuring the distributed 
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trust, as it is nearly impossible to tamper with transactions 
stored in blockchains, and all the historical transactions are 
auditable and traceable (Zheng et al. 2020).

The better organization of data markets can improve the 
extraction of value from data. For example, domain-specific 
markets (markets for finance, for health, for agriculture) may 
be more efficient than more general ones in detecting highly 
valuable datasets (Fernandez et al. 2020). The GAIA-X 
and i3-Market initiatives aim at creating a single European 
Data Market by 2030. The objective is to amplify network 
effects in data markets by enabling data suppliers to join a 
meta-platform to make their data visible for the data users 
in the participating marketplaces (Abbas et al. 2022). Data 
sovereignty must be ensured so that data owners can exclu-
sively decide which data they want to share with whom, for 
how long, under what conditions of use, and at what price 
(Bornholdt 2021). The GAIA-X project focusses on this and 
builds an infrastructure, rules, principles, and standards for 
achieving trust, interoperability, and data sovereignty in data 
sharing (Eggers et al. 2020). The International Data Spaces 
(IDS) standard is integral to GAIA-X enabling use of the 
IDS connectors that put the shared data inside a trusted, 
certified data space, ensuring that it is used only as agreed 
upon per the terms set by the parties involved (IDSA 2019).

The data marketplaces can focus on local users and use 
cases (e.g., in geofenced areas or buildings) requiring high 
trust, security, and speed in data exchange. For example, 
(Anthony 2023) presents recommendations for using decen-
tralized data marketplaces to contribute to sustainable devel-
opment in cities. The sellable data products can be based on 
Edge servers’ Data and Processing Capabilities (EDPCs) 
that keep the data at the local level and do not transfer the 
“raw” or unprocessed data to the cloud (Palviainen and Suksi 
2023). There are developed enterprise data marketplaces that 
contain a metadata-based inventory for EDPCs in edge data 
lakes to enable the realization of applications based on local 
data (Gröger 2021). However, these marketplaces focus typi-
cally more on matching data supply and demand within the 
enterprise than providing data for external users (Yerabolu 
et al. 2019).

The national and EU-level data-related regulation is 
evolving, and there is a vast amount of data-type-specific, 
e.g., personal data under GDPR (EU 2016) and sector-spe-
cific regulations and the upcoming Data Governance Act 
(EU 2022), Data Act (European Commission 2022), and AI 
Act (European Commission 2021) that must be considered 
in data exchange and trade (Palviainen and Suksi 2023). 
Data productization requires legal and contractual frame-
works to decrease legal uncertainty regarding trading data 
(Duch-brown et al. 2017; Spiekermann 2019; Bornholdt 
2021).

The metadata describing the sellable data products in 
marketplaces can be organized hierarchically, tagged in 

some way, or left unstructured (Ramachandran et al. 2018) 
and standards such as SensorML (Robin and Botts 2007) 
or OCF (Park 2017) data models offer standardized ways 
to organize the sensor information. Automatic metadata 
generation (see, Sharma et al. 2020) increases efficiency in 
data productization, as it reduces the need for manual meta-
data production, decreases errors in metadata, and offers a 
way to produce more metadata to assist in selection of data 
products.

The quality control, curation, and recommendation sys-
tems can be provided for sellable data to assist finding of 
good quality, reliable sellable data products in a marketplace 
(Ramachandran et al. 2018; Sharma et al. 2020). For exam-
ple, Sharma et al. (2020) discuss a service that enables a 
data buyer to ensure in the purchase phase that the data set 
fulfills the desired quality requirements. In addition, buyers 
and sellers can rate each other in a marketplace that assist 
the buyers to assess the quality of the data product provided 
by a given seller (Ramachandran et al. 2018). In addition, 
a simulation approach (Palviainen and Kotovirta 2021) is 
developed to assist optimization of vehicle-based supply of 
data for quality and cost-oriented data users.

2.3.2 � Dynamism in data trade

Digital technologies and algorithms offer ways to decline 
the cost of collecting, distributing, searching, and using data 
coming from various sources (Duch-brown et al. 2017). Data 
trading schemes assist in the data pricing, and there can be 
an auction process to allocate commodities and establish 
corresponding prices through data buyers’ and data sellers’ 
bidding process (Liang et al. 2018). There are marketplaces 
that allow the dynamic use of data processing capabilities. 
For example, a DeepMarket marketplace enables users to 
lend or borrow edge computing resources for the distributed 
execution of ML programs (Yerabolu et al. 2019). There can 
be dynamism in data delivery, too. For example, (Lorenzo 
and Gonzalez-Castano 2016) discuss an approach to incen-
tivize users to share their connectivity in a user-provided 
network and obtain a profit by selling and buying leftover 
data capacities (caps) from each other.

2.3.3 � Flexibility in data trade

There can be flexibility in data offerings, payment meth-
ods, and pricing models. For example, there is the concept 
of using arbiters in the combination of individual datasets 
to add value in different mashups to satisfy a varied set of 
buyers’ needs (Fernandez et al. 2020). Data suppliers can 
offer different pricing models, such as free data (e.g., sample 
data), usage-based pricing (e.g., data stream usage and ser-
vice time-based pricing), or package pricing models (e.g., a 
data package plan with a fixed price) for sellable data (Liang 
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et al. 2018) that allows data users to select the most appro-
priate pricing model for data use. The data marketplaces can 
offer different payment options and, for example, (Sharma 
et al. 2020) discuss a data marketplace enabling paying with 
cryptocurrencies, PayPal, and traditional banking. For exam-
ple, the use of cryptocurrencies enables seamless micro-pay-
ments for data making it possible to perform more flexible 
and shorter-term interactions (Ramachandran et al. 2018).

2.4 � Related works

Table 1 presents the prior studies that have developed solu-
tions to increase efficiency, dynamism, and flexibility in data 
trade. This work extends the previous studies by introduc-
ing novel elements for data trade. First, the Market, Situa-
tion, and Context Update (MSC)-messages are proposed to 
deliver fresh information about the market, situation, and 
context changes to enable continuous data supply and data 
use optimization in data trade. Second, the ODS, EODS, 
DDS, and EDDS strategies are proposed to assist optimiza-
tion of the sellable data supply.

3 � Four strategies to supply data 
in high‑granularity data trade

Technological development, such as robotized data trade, 
sets new requirements for data trade. For example, the use 
of network and computing capabilities should be optimized 
so that sustainable development, profitability, and energy 
efficiency goals are achieved in the sellable data supply, 
delivery, and use. The rest of this paper focuses on high-
granularity data trade that aims at achieving these goals 
by increasing granularity as well as situational and context 
awareness in sellable data supply and use optimization.

Although there are previous efforts to increase the effi-
ciency, dynamism, and flexibility in data trade (in Table 1), 
the existing approaches do not focus on increasing market, 
situational, and context awareness in sellable data supply 
and use optimization. This section presents a novel model 
for high-granularity data trade to increase granularity as well 
as market, situation, and context awareness in sellable data 
supply and use. By achieving these goals, it is possible to 
further improve (see Fig. 1):

(1)	 Efficiency in data trade The Market, Situation, and 
Context Update (MSC)-messages increase profitabil-
ity and energy efficiency in data exchange and trade, as 
they deliver fresh information about the market, situ-
ation, and context changes to enable continuous data 
supply and data use optimization.

(2)	 Dynamism in data trade The short-term data supply 
and short-term data use increase dynamism in data 

trade. This requires that it is fluent to join to market-
places. There should be low latencies in data discovery, 
exchange, and trade and ways to sell and buy data with-
out human intervention.

(3)	 Flexibility in data trade There are data supply and 
data use strategies for different purposes and use cases 
to increase flexibility in data trade. Multiple pricing 
models are offered for data and the changes in data 
freshness, quality, and volume can affect pricing and 
selection of data products.

Achieving these goals require building of an adaptive 
system for sellable data supply and use. This kind of sys-
tem can be based on a loop that delivers MSC-messages 
for data use and data supply optimization (see the upper 
part in Fig.  2). This work focuses on the data supply 
optimization part and considers data offerings and data 
demand as main drivers on data markets. There should be 
data supply strategies for these drivers. First, there should 
be strategies that assist supply of data offerings for the 
expected demand, context, and situation. Second, it should 
be possible to supply adapted data for data users’ require-
ments, context, and situation. We used these requirements 
and the optimization loop in Fig. 2 as a starting point and 
developed strategies for the following:

(1)	 Offering-driven data supply (ODS) that delivers fully 
prepared data for data buyers. A data supplier prepares 
the data and publishes it as a sellable data product in 
the marketplace and trusts that there is demand for it. 
There are (at least) two options for ODS. A data sup-
plier can use ODSp (p for periodic) and perform peri-
odic updates for data offering. Or a data supplier can 
use ODSmax and attempt to maximize its market share 
in the marketplace. In ODSmax, the data supplier can 
estimate the market share by first computing the num-
ber of active data users for which the supplier offers 
the most suitable data product in the marketplace and 
update the data offering if it increases that number.

(2)	 Demand-driven data supply (DDS) that delivers 
adapted data for data users’ requirements: a data sup-
plier prepares data supply capabilities, then publishes a 
showcase data product in the marketplace, and finally 
prepares the data after a data user has bought the data 
product and request the data for use. The data can be 
adapted and delivered at a desired resolution and qual-
ity level for decreasing the data volume, use of network 
connections, and data transmission latencies.

(3)	 Event and offering-driven data supply (EODS) that 
delivers situational and contextual data for detected 
events: a data supplier prepares the situational data 
and publishes it as a sellable data product in the mar-
ketplace and trusts that there is demand for the data. 
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The situational data can assist in decision-making and 
enable faster reaction to detected events and anomalies.

(4)	 Event and demand-driven data supply (EDDS) that 
delivers adapted situational and context data for 
detected events: a data supplier prepares data supply 
capabilities, then publishes a showcase data product in 

a marketplace, and finally prepares the data after a data 
user requests the data for use.

Following subsections analyze these four data supply 
strategies in more detail.

Table 1   Approaches to increase efficiency, dynamism, and flexibility in data trade

Goal 1: Efficiency in data trade Goal 2: Dynamism in data trade Goal 3: Flexibility in data trade

Existing 
approaches 
and meth-
ods

• Centralized or decentralized data 
marketplaces (Alvsvåg et al. 2022; 
Ramachandran et al. 2018; Anthony 
2023)

• Dynamism in data offerings (Duch-
brown et al. 2017; Fernandez et al. 
2020)

• Flexible data offerings (Fernandez et al. 
2020)

• Local data markets (Anthony 2023; 
Palviainen and Suksi 2023; Gröger 
2021; Yerabolu et al. 2019)

• Dynamism in data pricing (Liang et al. 
2018)

• Flexible pricing models (Liang et al. 
2018)

• Federated data markets (Abbas et al. 
2022; Eggers et al. 2020; IDSA 2019)

• Dynamism in data processing (Yer-
abolu et al. 2019)

• Flexibility in payment options (Sharma 
et al. 2020)

• Domain-specific data markets (Fernan-
dez et al. 2020; IDSA 2019)

• Dynamism in data delivery (Lorenzo 
and Gonzalez-Castano 2016)

• Identity and Access Management 
(IAM) systems (Mangiuc 2012; 
Ramachandran et al. 2018)

• Smart contracts and blockchains 
(Zheng et al. 2020)

• Regulation (EU 2016, 2022; European 
Commission 2022; European Commis-
sion 2021)

• Legal and contractual frameworks 
(Bornholdt 2021; Duch-brown et al. 
2017; Spiekermann 2019)

• Standardized and interoperable APIs, 
protocols, and architectures for data 
sharing (McGrath et al. 2019; Fielding 
2000; Anthony Jnr et al. 2020; Patti and 
Acquaviva 2016; IDSA 2019; Simmhan 
et al. 2018)

• Tools for big data (Khan and Kiani 
2012)

• Automatic metadata generation and 
metadata standards (Sharma et al. 2020; 
Ramachandran et al. 2018; Robin and 
Botts 2007; Park 2017)

• Quality controls for sellable data 
(Sharma et al. 2020)

• Curation and recommendation for data 
and ratings for data sellers and data 
buyers (Ramachandran et al. 2018)

• Simulations (Palviainen and Kotovirta 
2021)

Methods for 
high-gran-
ularity data 
trade

• Market, Situation, and Context Update (MSC)-messages
• Situational and context awareness in data supply and data use
• Offering-driven supply of data
• Demand-driven supply of data
• Event and offering-driven supply of data
• Event and demand-driven supply of data
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Fig. 1   The characteristics for high-granularity data trade
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Fig. 2   A basic process, example, and four data supply strategies for high-granularity data trade



Environment Systems and Decisions (2025) 45:2	 Page 9 of 20  2

3.1 � Efficiency in data supply

The proposed strategies increase efficiency in data supply 
by optimizing the data supply for the estimated demand (see 
Fig. 2). The MSC-messages deliver fresh information about 
data users and sellable data products in the marketplace. 
MSC-messages can contain data supply notifications (DSNs) 
and data use notifications (DUNs). DSNs offer information 
about data products’ prices, volume, freshness, and quality. 
DUNs deliver information about data users’ requirements 
for data and about new, interrupted, or canceled data product 
subscriptions. In addition, DUNs contain requests for new 
data products if there are gaps in the sellable data coverage 
and availability.

In demand estimation, there can be used prediction meth-
ods, information delivered in MSC-messages, and other mar-
ket information, such as historical and statistical information 
about data users and data use. The demand estimation can 
analyze the data demand, data supply, and data user distribu-
tion in the marketplace, and identify the data users’ require-
ments for data quality, price, and freshness.

The data supply is optimized in two phases in DDS and 
EDDS. The data supply capabilities and showcase data prod-
ucts are first prepared for the estimated demand. The data are 
prepared after there is a user for the data. ODS and EODS 
prepare the sellable data directly for the estimated demand. 
However, the data are ready to be used, but there is a risk 
that there are not enough users for the data if the demand is 
estimated incorrectly.

3.2 � Dynamism in data supply

The proposed strategies offer ways for increasing dynamism 
in data supply. The short-term supply of data is based on 
MSC-messages that assists the data suppliers to analyze the 
markets and to adapt data supply when there are gaps in 
data availability (e.g., in high-quality data availability) or 
interrupt or stop the data supply if there are overlapping 
(e.g., cheaper) data products in the marketplace. Adapting 
to demand changes is easier in DDS than in ODS. Instead 
of preparing the data for changing demand, it is faster and 
cheaper to publish showcase data products to make the 
potential data offering visible in the marketplace and prepare 
the data after there are users for it.

3.3 � Flexibility in data supply

The proposed strategies increase the flexibility in data sup-
ply. ODS and EODS offer data for the expected demand. 
DDS and EDDS can deliver adapted data for the data user’s 
requirements. In addition, a data user can tailor the data 

product to contain the desired data elements, features, con-
tent, information, and functionalities, reducing data use cost 
in the purchase phase.

Alternative pricing models for the data products can be 
provided, such as API call-based pricing models for occa-
sional use of data and subscription-based pricing models 
for continuous use of data. In EODS and EDDS, there can 
be also event-related pricing models for data. For example, 
the delay that it takes to offer data for an event may affect 
the pricing of data.

4 � Methodology

Computer simulation was used as a methodology to evaluate 
the use of the suggested ODS, EODS, DDS, and EDDS strat-
egies in the supply of air quality data for four user groups 
with different requirements for the data quality, freshness, 
and price. The simulation followed the basic structure of 
computer simulation that consist of (a) a model that defines 
the structure and behavior of the system that is the subject 
to the study, (b) a scenario that is a model of the exogenous 
stimuli applied to the system, (c) a simulator that refers to 
a simulation engine that is reusable for the simulation of 
many models and scenarios, and an (d) instrumentation that 
defines which variable(s) of interest to observe during the 
simulation execution, what computation(s) to apply at run-
time to the data samples produced by these variables, and 
what is logged to result files (Dalle 2012).

A simulator prototype that is implemented in JavaScript 
was used in the simulation. The simulator prototype was 
used in a Microsoft Edge browser on a laptop computer with 
a 2.10 GHz Intel Core i7-12850HX processor and 64 GB of 
main memory. The simulation results were stored as CSV 
files and analyzed and visualized in Excel. The following 
subsections discusses the model and parameters that were 
used in the simulations.

4.1 � Simulation model

The simulations evaluate the supply of air quality data in 
a city (see Fig. 3) that has a smart lighting pole infrastruc-
ture, data platform, marketplace, and 5G connections for 
data exchange and trade.

The Air Quality Index (AQI) (FMI 2023) used in Fin-
land considers the concentrations of sulfur dioxide (SO2), 
nitrogen dioxide (NO2), respirable particles (PM10), fine 
particles (PM2.5), ozone (O3) carbon monoxide (CO), and 
the total reduced sulfur compounds (TRS). The smart light-
ing poles are equipped with air quality sensors and provide 
a service that delivers notifications of AQI change events 
for data users.

Two kinds of data products are on sale in the marketplace:
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(a)	 Ultra-Local Data Products (ULDPs) that offer pole-
specific air quality data for a single measurement point 
in the city. ULDP provides computed AQI for a single 
pole, measured values for SO2, NO2, PM10, PM2.5, O3, 
CO, and TRS, and a classification for the air quality.

(b)	 District-Level Data Products (DLDPs) The data sup-
pliers purchase ULDPs, use the ultra-local air quality 
data in computation of AQIs for the street sections in a 
specific city district, and finally prepare DLDPs for the 
marketplace to provide AQI data, adapted AQI data, 
and situational data or adapted situational data for data 
users. The data suppliers produce high-quality DLDPs 
to offer under 1-min-old AQI data and low-quality 
DLDPs to offer 1- to 3-min-old air quality data for a 
specific district in the city.

The data users are pedestrians and motorists that use 
a Route Optimizer Service for navigation in the city. The 
service computes route options and uses air quality data 

(DLDPs) for selecting the route with the best air quality 
for the user. In a use cycle, DLDP is first purchased for a 
route selection (see Fig. 3). If AQI change events occur, the 
service purchases DLDP for situational data and calculates 
an updated route for the data user.

The high-granularity data trade features are implemented 
as a layer that consists of the market driver (MD), data use 
optimization (DUO), and data supply optimization (DSO) 
components (see Fig. 3). The DSO components drive data 
supply and DUO components drive data use. The MD com-
ponent monitors the data trade in the marketplace, composes 
the DSNs and DUNs to MSC-messages, and finally delivers 
these messages for the DUO and DSO components.

4.2 � Simulation parameters

Table 2 depicts the parameters used in the simulations.
Figure 4 is based on the traffic census numbers in Lille-

berg and Hellman (2015) and shows how the daily vehicle 

Fig. 3   A use case for high-gran-
ularity data trade in a smart city



Environment Systems and Decisions (2025) 45:2	 Page 11 of 20  2

traffic is spread for different hours on working days in the 
city of Helsinki. These numbers were used as a starting point 
for the simulations that focus on four data user groups (see 
Table 2) that each consists of 100 users and have different 
requirements for the data quality, freshness, and price. The 
number of data users per hour (the demand for data) follows 
the hourly distribution of the vehicle traffic in Helsinki (see 
Fig. 4) so that in each simulation step there is same number 
of users from each four data user group. The data users move 
on a well-defined geographical region, and it is assumed that 
each DLDP offers the needed data for the route selection.

It is assumed that the time to use the Route Optimizer 
Service (the use cycle duration) is 10 min for each data 
user. The DUO component attempts to maximize the data 

quality and data freshness for groups A and C and mini-
mize the data use cost for groups B and D by purchasing 
the cheapest DLDPs in a correct quality category for these 
users. The DUO component searches first DLDPs that 
offer AQI data with the sufficient quality for the com-
puted route options. The DLDP that offers the newest 
or the cheapest data in the quality category is then pur-
chased. The short-term use and replacement of data prod-
ucts, pricing model selection, data product tailoring, and 
data adaptation could be used in data use optimization, 
too. However, this paper focuses on data supply optimiza-
tion, and for simplicity, the data product selection is the 
only data use optimization technique that is used in the 
simulations.

Table 2   Simulation parameters

Data supplier A Data supplier B Data supplier C Data supplier D Data supplier E

Data supply strategy ODSp ODSmax DDS EODS EDDS
Sellable data AQI Data for Routing Adapted AQI Data for Routing Situational 

Data for 
Rerouting

Adapted Situ-
ational Data for 
Rerouting

Pricing for high-quality DLDPs €1/DLDP €1.1/Data Request €1/DLDP €1.1/Data Request
Pricing for Low-quality DLDPs €0.3/DLPD €0.4/Data Request €0.3 / DLPD €0.4/Data Request
Input data cost 5 cents for high-quality DLDP and 2 cents for low-quality DLDP
Data preparation cost €0.01/DLDP – €0.01 / DLDP –
Data adaptation cost – €0.01/Data Request – €0.01/Data Request
User Group A 100 data users that want to use high-quality DLDPs and the most up-to-date data
User Group B 100 data users that want to use low-quality DLDPs and the most up-to-date data
User Group C 100 data users that want to use high-quality DLDPs that offer the lowest price for data
User Group D 100 data users that want to use low-quality DLDPs that offer the lowest price for data
Data use cycle duration 10 min
Simulation time 24 h
Time step size 1-s step size

Fig. 4   The diagram is based on 
the traffic census numbers in 
Lilleberg and Hellman (2015) 
and presents the percentage of 
daily traffic during different 
hours on working days in the 
city of Helsinki
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4.2.1 � Costs

ULDPs offer input data for DLDP preparation. It is assumed 
that the input data cost is five cents for high-quality DLDP 
and 2 cents for low-quality DLDP. Data preparation cost 
includes data processing and storing cost and is one cent for 
each DLDP in simulations. The cost of adapting the data for 
a data user’s request is one cent for a data request. Please 
note that the earnings, prices of data requests, and input data 
are not based on real pricing examples, as market informa-
tion is not easily available. However, arbitrary heuristic val-
ues can be used, as the main point of the simulations is not 
to estimate absolute realistic profit values, but to compare 
the different strategies.

4.2.2 � Pricing in ODS and EODS

The data marketplace can take a commission of sold data 
products. The revenues depend on the data quality, and it is 
assumed that a data supplier earns €1 from a high-quality 
DLDP and €0.3 from a low-quality DLDP (see, Table 2).

4.2.3 � Pricing in DDS and EDDS

The data request price is €1.1 in high-quality DLDPs and 
€0.4 in low-quality DLDPs. In simulations, one data request 
in each transaction is made and, thus, a data supplier earns 
either €1.1 or €0.4 from each transaction in DDS and EDDS.

5 � Findings

Simulations evaluate data suppliers’ profits, revenues, and 
costs in two simulation scenarios. The first scenario com-
pares offering and demand-driven strategies without event 
processing (ODS and DDS), while the second scenario 

considers the strategies that use events (EODS and EDDS). 
The time step affects the resolution of the simulation results. 
The time elapsed in a 24-h duration simulation by using a 
1-s time step in scenarios 1 and 2 was 1 h 30 min and 54 s. 
The results from simulation scenarios 1 and 2 are discussed 
in the following subsections.

5.1 � Results from simulation scenario 1

The simulation scenario 1 focuses on three data suppliers 
that use the following strategies in AQI data supply:

(1)	 Data supplier A relies on ODSp and performs periodic 
updates for the data offering (DLDPs). The AQI data 
update time is in range of 30 s to 5 min in simulations.

(2)	 Data supplier B relies on ODSmax and attempts to maxi-
mize its market share in the marketplace.

(3)	 Data supplier C relies on DDS. If possible, the previ-
ously purchased input data are used in preparation of 
AQI data for new requests. The preparation of high-
quality AQI data requires less than 1-min-old input data 
and the preparation of low-quality AQI data requires 
less than 3-min-old input data.

Scenario 1 consists of the sub-scenarios 1a, 1b, and 1c. In 
scenario 1a, there is only one data supplier and no competi-
tion in data supply (in Figs. 5 and 6). In scenario 1b, there 
are two rivals and, in scenario 1c, there are three rivals in 
data supply (in Fig. 6).

5.1.1 � Scenario 1a

Figure 5 shows simulation results for data supplier A in sce-
nario 1a. As can be seen, the longer AQI data update times 
decrease the cost but also revenues, as the AQI data available 
for data users are not fresh enough. The maximum profit of 

Fig. 5   Profit, revenues, and cost 
for data supplier A in simulation 
scenario 1a
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€133.83 is achieved when the AQI update time is 1 min and 
7 s. Data supplier B updates the AQI data for maximizing 
its market share and achieves almost 100% market share, as 
it is the only data supplier in scenario 1a. Data supplier C 
performs demand-driven supply of AQI data and saves in 
data preparation costs (see Fig. 6). The profit is €282 for data 
supplier C, and €192.83 for data supplier B in scenario 1a.

5.1.2 � Scenario 1b_AB

Data suppliers A and B are competing in scenario 1b_AB. 
Supplier A achieved the highest profit (or the lowest loss) 
-€20.97 when the AQI data update time was 4 min and 
58 s (see Fig. 6). In this case, the profit is €181.28 for data 

supplier B. Supplier A has a lower cost, but supplier B has 
significantly higher revenues and profit in data supply.

5.1.3 � Scenario 1b_AC

The DDS strategy produces higher revenues and lower cost 
in scenario 1b_AC (see Fig. 6). Supplier A achieves the 
highest profit, €36.66, when the AQI data update time is 
2 min and 52 s. In this case, the profit is €190.92 for data 
supplier C.

5.1.4 � Scenario 1b_BC

Figure 6 shows that the DDS strategy produces the higher 
revenues and lower cost in scenario 1b_BC. The profit is 

Fig. 6   Profit, revenues, and cost for data suppliers A (ODSp), B (ODSmax), and C (DDS) in the simulation scenarios 1a, 1b, and 1c
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€142.41 for supplier C and €63.41 for supplier B. The dif-
ference in profit comes especially from cost savings, as the 
cost is €65.29 for supplier B and €9.09 for data supplier C.

5.1.5 � Scenario 1c

The highest profit (or the lowest loss) for supplier A is 
−€23.57 when the AQI data update time is 2 min and 58 s 
(see scenario 1c in Fig. 6). In this case, the profit is €143.08 
for supplier C and €55.85 for supplier B. Supplier C earns 
the highest revenues but also has the lowest cost, as the cost 
is €9.12 for supplier C, €26.17 for supplier A, and €69.55 
for supplier B.

The results from the simulation scenario 1 show that 
the ODSmax and DDS strategies assist achieving efficiency, 
dynamism, and flexibility in sellable data supply. Thus, these 
strategies optimize data trade and extend the work done in 
the prior studies presented in Table 1.

5.2 � Results from simulation scenario 2

Simulation scenario 2 focuses on two data suppliers that 
supply high- and the low-quality situational AQI data for air 
quality change events. The AQI event time is in the range 
of 30 s to 15 min in the simulations. The suppliers use the 
following strategies in data supply:

(1)	 Data supplier D relies on EODS in supply of situational 
AQI data (DLDPs).

(2)	 Data supplier E relies on EDDS. The data supplier 
reacts to AQI change events, publishes showcase data 
products in the marketplace, and finally prepares the 
situational AQI data for data users’ requests.

Scenario 2 consists of sub-scenarios 2a and 2b. In sce-
nario 2a, there is only one supplier and no competition in 
data supply. In scenario 2b, there are two rivals in data 
supply. Figure 7 shows that the simulated profits, revenues, 
and costs decrease as the AQI event time increases. Data 
supplier D has lower cost, but data supplier E achieves 
clearly higher revenues and profits in scenarios 2a and 2b. 
For example, for a 1-min AQI event time, data supplier 
E’s revenue is €3000, and cost is €180 in scenario 2a. In 
this case, the revenue is €2600, and cost is €129.58 for 
supplier D.

The results from the simulation scenario 2 show that 
the EDDS strategy assists achieving higher profits in situ-
ational AQI data supply, especially in the case of shorter 
AQI event time. Thus, the EDDS strategy improves effi-
ciency, dynamism, and flexibility in sellable data supply 
and this way optimizes data trade and extends the work 
done in prior studies presented in Table 1.

Fig. 7   Simulated profit for data supplier D and E as the AQI event time increases from 30 s to 15 min in scenarios 2a and 2b
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6 � Discussion and implications

The high-granularity data trade aims at increasing granu-
larity as well as market, situational, and context aware-
ness in data supply and use. The MSC-messages support 
this, and a layer that contains components for continuous 
data supply and data use optimization can be provided. 
However, there must be a fast network infrastructure and 
a marketplace that offers sufficient APIs for data exchange 
and trade. In addition, integration is needed to connect the 
layer to the marketplace and to the data use and supply 
components.

The data supply strategies have different strengths and 
weaknesses that must be considered when using these. For 
example, there are use case-specific requirements for the 
data supply strategies. ODS and EODS can serve instant 
use of data as DDS and EDDS enable preparation of data 
processing capabilities (e.g., edge computing capabilities) 
for potential data demand and adapting the data for data 
users’ requirements. EODS and EDDS support supply of 
situation-dependent data. Data suppliers can use a set of 
strategies in data supply. For example, a data supplier can 
use the DDS strategy first and prepare the data after there 
is a user for it and subsequently use the ODS strategy in 
the selling of the prepared data for new data users, too.

DDS increased efficiency in data supply in the simu-
lated scenarios. There was higher profit and revenues and 
lower costs in DDS than in ODS, and it seems that DDS is 
a better strategy if there is great fluctuation in data demand 
or only a small number of data buyers in the marketplace. 
However, DDS cannot serve use cases that require ready 
prepared data.

The ODS strategy with market share maximization 
(ODSmax) produced higher profits and revenues than the 
ODS strategy with periodic updates (ODSp) in the simu-
lated scenarios. However, the costs were higher in ODSmax 
than in ODSp. EDDS increased efficiency in data supply in 
the simulated scenarios. The costs were lower in EODS, 
but EDDS produced clearly higher revenues and profits in 
the simulated scenarios.

Table 3 presents a SWOT-analysis of the ODS, DDS, 
EODS, and EDDS strategies.

ODS supports the supply of data for steady data market. 
These data can be statistical/historical data, slowly chang-
ing or periodically updated data, or data that do not require 
adaptation. The ODS and EODS strategies provide ready 
prepared sellable data, but there is a risk that there are no 
buyers for the data. In addition, the lack of input data can 
prevent preparation of sellable data in advance in ODS 
and EODS.

The DDS and EDDS strategies enable the supply 
of adapted and more up-to-date data for demand. The 

capabilities, such as edge computing capabilities, can be 
prepared for data supply, and the showcase data products 
make these capabilities visible in the marketplace. There 
can be a high volume of input data requiring complex pro-
cessing and increasing latencies in demand-driven data 
supply or then a part of the data processing must be per-
formed before there is a user for the data. For example, 
calculating an average for the last 5 min of AQIs requires 
continuous processing and storing of the AQI values as 
time-sequence data, or then it takes more than 5 min to 
collect the data and to calculate the average for the last 
5 min of AQIs, and deliver the result for the data user.

7 � Conclusion

The idea of the high-granularity data trade is to increase 
granularity as well as situational and context awareness in 
sellable data supply and use. This paper introduces four data 
supply strategies for high-granularity data trade. ODS and 
EODS offer fully prepared data that shortens processing 
delays in data use. However, there is a risk that there is no 
demand for the prepared data. The DDS and EDDS strate-
gies decrease the unnecessary data preparation and enable 
adaptation of the data. However, the processing delays are 
higher than in ODS or in EODS, as the data are processed 
for data users’ requests.

DDS increased efficiency in data supply in the simulated 
scenarios. There was higher profit and revenues and lower 
costs in DDS than in ODS. However, there are use cases 
that require the use of ODS, as DDS does not offer ready 
prepared data for instant use of data. EDDS increased effi-
ciency in data supply in the simulated scenarios. The costs 
were lower in EODS, but EDDS produced clearly higher 
revenues and profits.

The MSC-messages assist in the data supply and data 
use optimization but cause additional network traffic in data 
trade. The full deployment of the strategies requires changes 
to the data supply and data use components and to data 
products. The data marketplace should offer API-call-based 
charging mechanisms for data products that enable charg-
ing users for data requests in DDS/EDDS. Second, there 
should be a mechanism for data product tailoring and meta-
data to determine tailoring options for data products. There 
can be extension components that add these capabilities to 
the marketplace, but it is required that the data marketplace 
APIs offer sufficient methods to enable the implementation 
of these components. ODSmax requires information about 
active data users in a marketplace. If the marketplace does 
not offer this information, the DUO and MD components 
and MSC-messages can be used for delivering this informa-
tion for the data suppliers.
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The findings can have practical and social implications in 
smart cities. The high-granularity data trade and suggested 
data supply strategies assist optimization of sellable data 
supply for data demand and offer ways to improve cost and 
energy efficiency in sellable data supply, delivery, and use. 
This, in turn, can provide better sellable data for citizens, 
businesses and data-driven services that assist everyday life 
in cities.

Several actions were performed for ensuring the correct-
ness of the simulation results. The simulator was developed 
incrementally and tested by performing very limited and 
simple simulation scenarios first. The goal was to detect the 
possible errors in the simulator, model, scenario, and instru-
mentation and fix these errors before performing the actual 
simulations. In addition, realistic simulation parameters 
were tried to be determined for the simulations. However, 
although simulated information was produced for the sug-
gested data supply strategies, there is a still a clear need for 
further studies and simulations to improve the reliability and 
validity of the results. For example, there are limitations in 
the simulation method and uncertainties in the used simu-
lation parameters (see Table 2) that affect the accuracy of 
the results. The following paragraphs discuss elements that 
affect the accuracy, reliability, and validity of the simulation 
results.

7.1 � Market information

Data marketplaces are evolving but currently only a small 
part of available data is provided as sellable data products. 
In practice, this means that it is difficult to get real market 
information about the structure of markets, about data prod-
ucts’ pricing, and about shares of different kinds of data 
users such as cost and quality-oriented users in the market-
places. Without market information, it is also challenging to 
measure the reliability and validity of the simulation results. 
For example, the comparison information about the usabil-
ity of the suggested data supply strategies in real use cases 
would assist the evaluation of the accuracy of the simulation 
results.

7.2 � Simulation model

A very simplified model was used in the simulation sce-
narios that focused on a fixed set of data suppliers that do not 
change strategy in data supply. However, there can be great 
dynamism in the real-world data markets: new data suppli-
ers can emerge who continuously optimize data supply and 
data pricing, and use different strategies in the data supply, 
affecting the data demand, too. The more comprehensive 
modeling and simulation of this dynamism would improve 
the accuracy of the results and offer information of the use 
of data supply strategies in changing data markets.

7.3 � Simulation parameters

Although realistic simulation parameters were tried to be 
determined, there is a much uncertainty in these values as 
there are no measured data about these simulation parameters 
available (e.g., about data product prices for different quality-
levels). The following paragraphs discuss the used simulation 
parameters and propose ways to improve the accuracy of the 
simulation results.

7.4 � Earning and pricing parameters

The simulations require estimates for the earnings from a sin-
gle data product (in the case of ODS and EODS) and from a 
single data request (in the case of DDS and EDDS). Although 
the realistic estimates were attempted to be determined, there 
is uncertainty in these estimates. Real market information of 
AQI data pricing would improve the estimates and assist in 
obtaining more accurate values for data suppliers’ profits and 
revenues.

7.5 � Cost parameters

The simulations require estimates for the input data use, data 
processing, and data product preparation costs. The errors 
in these estimates affect the simulated cost and profits of the 
data suppliers. Unfortunately, it is difficult to estimate these 
costs at a generic level. For example, the data processing cost 
depends on the used processing capabilities (e.g., the used 
cloud or edge-computing capabilities) and the input data cost 
can depend on the local data markets in a city.

7.6 � Data user distribution

In simulations, the number of data users follows the hourly 
distribution of vehicle traffic that was measured in the city 
of Helsinki. However, it is challenging to estimate the share 
of cost-oriented users and quality-oriented users in a specific 
city or city district. Now, only a rough estimate for the user 
distribution is used, as there is the same number of users from 
each data user group in the simulations. Information of user 
distribution in the marketplaces and cities would minimize the 
errors in these estimates and assist in the planning and target-
ing of the data supply for demand.

In summation, market information and city-level informa-
tion are needed to assist in the estimation of data pricing, data 
preparation costs, and data user distribution in a specific city 
or city district.
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Appendixes

Appendix 1: Abbreviations

AQI	� Air Quality Index
CAV	� Connected and automated vehicle
CO	� Carbon monoxide
DDS	� Demand-driven data supply
DLDP	� District-level data product
DPCs	� Data and processing capabilities
DSN	� Data supply notification
DSO	� Data supply optimization
DUN	� Data use notification
DUO	� Data use optimization
EODS	� Event and offering-driven data supply
EDDS	� Event and demand-driven data supply
EDPC	� Edge servers’ data and processing capability
GDPR	� General data protection regulation
IDS	� International data spaces
IoT	� Internet of Things
MD	� Market driver
MQTT	� Message queuing telemetry transport
MSC	� Market, situation, and context update
NO2	� Nitrogen dioxide
O3	� Ozone
ODS	� Offering-driven data supply
ODSmax	� Offering-driven data supply with market share 

maximization
ODSp	� Offering-driven data supply with periodic updates 

for data offering
PM2.5	� Fine particles
PM10	� Respirable particles
SO2	� Sulfur dioxide
TRS	� Total reduced sulfur compounds
ULDP	� Ultra-local data product

Appendix 2: Formulas

The following formulas are used for calculating cumula-
tive profit, revenues, and cost for each data supplier from 
the start to simulation time t:

(1)	 Cumulative profit: Profit(t) = Revenues(t) − Costs(t)

(2)	 Cumulative revenues:

In the formula, the Transactions (0, t) is a collection of 
the data supplier’s data sale transactions from the start 

Revenues(t) =
∑

transaction∈Transactions(0,t)

Revenues(transaction)

to the simulation time (t). The revenues from a data sale 
transaction depend on the used data supply strategy and 
are calculated as follows:

a.	 Revenues from a data sale transaction in ODS and 
EODS:

b.	 Revenues from a data sale transaction in DDS and 
EDDS:

(3)	 Cumulative cost related to a data product from the start 
to the simulation time (t):

The DataProducts(0, t) contains the data products that 
a data supplier has produced from the start to the simu-
lation time (t). The cumulative data production cost 
depends on the data supply strategy and is calculated 
as follows:

a.	 Data production cost in ODS and EODS:

b.	 Data production cost in DDS and EDDS:
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∑
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