Toimeenpanosuunnitelma Suomen proteiiniomavaraisuuden nostamiseksi

Emilia Nordlund, Katariina Vilppula (toim.)
Tiivistelmä

Vilja-ala on yhteistyöryhmä VYR ry järjesti vuonna 2018 työpajoja, joissa tarkasteltiin Suomen näkökulmia ja tarvittavia toimenpiteitä proteiiniamavaraisuuden nostamiseksi keskustellut tavalla. Työpajat keskittyivät kuuteen teemaan: 1) viljakasveihin, 2) palkokasveihin, 3) öljykasveihin, 4) nurmeen, 5) vesitalouteen (keskitten kalatalouteen) sekä 6) hyönteistuotantoon ja solumaalouteen. Tässä raportissa esitetään koostetusti näiden työpajojen johtopäätökset ja peilataan niitä 2015 tiekartan toimenpideehdotuksiin. Uuden tiedon ja osaamisen valossa raportti esittää myös uusia toimenpideehdotuksia toimijaverkostolle (päätäjille, maataloussektorille, teollisuudelle) Suomen proteiiniamavaraisuuden lisäämiseksi.

Puitavien kasvien osalta yhteisiä toimenpidekokonaisuuksia olivat viljelyvarmuuden ja satoisuvuuden kehittäminen ja proteiiniipitoisuuden kasvattaminen jalostuksen ja viljelyteknikoiden keinoin, sekä koko ketjun yhteistyön edistäminen. Erityisesti alkuottautujen kouluttaminen ja sopimusviljelyn edistäminen nousivat selkeiksi tulevaisuuden toimenpiteiksi. Eliintarvikekäytössä ingrediendiotteluussuuden kasvattaminen Suomessa olisi tärkeää, ja tutkimuksen osalta painotettiin erityisesti rehukäytön osalta vahvistamisen ja laadun ymmärtämistä. Proteiinityöryhmän perustaminen tiedon jakamiseksi ja yhteistyön edistämiseksi, ja Vilja-ala yhteistyöryhmä VYR ry:n alle onkin nyt tarkoitettuna perustaa proteiinityöryhmän, jonka tarkoituksena on edistää toimenpideehdotusten viemistä käytäntöön vilja-, palko- ja öljykasvien osalta, muiden asioiden lisäksi myös nurmet mukaan lukien ja olla aktiivisesti mukana vuoropuhelussa Euroopan komission kanssa Euroopan-tason toimenpiteiden osalta.

Kalatalous voi olla merkittävä rooli Suomen proteiiniamavaraisuuden nostossa, mutta ei ilman selkeää strategiaa ja toimenpideehdotusten toteuttamista sekä sisäisesti että ulkopuolella olevan strategian ylläpitämiseksi. Rannikkokalastuksen tulee edistää ja uusia liiketoimintakeskusteluja järjestettävä. Kalatalous voi olla merkittävä rooli Suomen proteiiniamavaraisuuden nostossa. Yleisesti ottaen, kun keskustelussa esiintyvät asiakkaat käyvät keskustelussa toimenpiteiden ehdotusten ja niiden kutsun kohdella samalla strategia, on tärkeää, että tällaiset keskustelut sisältävät myös erityisiä asioita, jotka ovat tärkeitä Suomen proteiiniamavaraisuuden nostamiseksi.
Sisällys

Tiivistelmä... 2
1. Johdanto ... 5
2. Viljakasvit ... 6
 2.1 Tiekartan (2015) toimenpide-ehtotukset ... 6
 2.2 Toimenpide-ehtotukset syksyn 2018 työpajojen pohjalta ... 6
 2.2.1 Alkutuotanto ... 6
 2.2.3 Rehukäyttö ... 6
 2.2.2 Elintarvikekäyttö ... 7
3. Palkokasvit ... 7
 3.1 Tiekartan (2015) toimenpide-ehtotukset ... 7
 3.2 Toimenpide-ehtotukset syksyn 2018 työpajojen pohjalta ... 8
 3.2.1 Alkutuotanto ... 8
 3.2.2 Rehu- ja elintarvikekäyttö ... 9
4. Öljykasvit.. 9
 4.1 Tiekartan (2015) toimenpide-ehtotukset ... 9
 4.2 Toimenpide-ehtotukset syksyn 2018 työpajojen pohjalta ... 10
 4.2.1 Alkutuotanto ... 10
 4.2.2 Rehukäyttö ... 10
 4.2.3 Elintarvikekäyttö ... 10
5. Nurmet .. 11
 5.1 Tiekartan (2015) toimenpide-ehtotukset ... 11
 5.2 Toimenpide-ehtotukset syksyn 2018 työpajojen pohjalta ... 11
 5.2.1 Alkutuotanto ... 12
 5.2.2 Rehukäyttö ... 12
 5.2.3 Elintarvikekäyttö ... 12
6. Hyönteiset ja solumaatalous ... 13
 6.1 Tiekartan (2015) toimenpide-ehtotukset ... 13
 6.2 Toimenpide-ehtotukset syksyn 2018 työpajojen pohjalta ... 13
 6.2.1 Alkutuotanto ... 13
 6.2.2. Rehukäyttö ... 15
 6.2.3 Elintarvikekäyttö ... 15
7. Vesitalous: kalatalous .. 16
 7.1 Tiekartan (2015) toimenpide-ehtotukset ... 16
 7.2 Toimenpide-ehtotukset syksyn 2018 työpajojen pohjalta ... 16
 7.2.1 Alkutuotanto ... 16
 7.2.3 Rehukäyttö ... 17
 7.2.2 Elintarvikekäyttö ... 17
8. Yhteenvedo ja johtopäätökset .. 18
 Lähteet ... 20
 Liitteet .. 22
 Liite 1. Työpajojen osallistujat .. 22
1. Johdanto

Muutostuulista johtuen Vilja-alaan yhteistyöryhmä VYR ry järjesti vuonna 2018 työpajoja, joissa tarkasteltiin, missä proteiinientäällä menänä Suomessa ja minkälaisia tavoitteita ja toimenpiteitä tulisi asettaa tuleville vuosille. Syksyllä 2018 VYR järjesti kuusi työpajoja, joiden tavoitteena oli laatia suunnitelma Suomen proteiiniomavaraisuuden nostamiseksi. Työpajoissa käsiteltiin proteiiniomavaraisuutta ja pyrittiin löytämään toimenpiteitä sen nostamiseen viljelojen, palko- ja öljykasvien, nurmen, vesitalouden (painottuen kalatalouteen) sekä hyönteisten ja solumatalouden näkökulmasta.

Kaikki proteiinilähteet eivät tulleet käsiteltyiksi syksyn 2018 työpajoissa. Esimerkiksi levät ja lhiantuotannon sivuvaraat jäävät tällä kertaa keskusteluiden ulkopuolelle, sillä näiden aiheiden asiantuntijoita ei ollut mukana työpajoissa.

Helsingissä, 21.03.2019
Katariina Vilppula ja Emilia Nordlund
2. Viljaksavit

2.1. Tiekartan (2015) toimenpide-ehdotukset

Viljojen osalta potentiaalia nähtiin satoisuuden noston lisäksi myös proteiinipitoisempien viljalahjekkeiden kehittämisessä. Lajikejalostuksessa tulisi panostaa edellytettyä viljan proteiinipitoisuuden nostamiseen. Satotason noustessa viljelyalaa voitaisiin siirtää esimerkiksi haidaralle ja kauralle.

2.2 Toimenpide-ehdotukset syksyn 2018 työpajojen pohjalta

2.2.1 Alkutuotanto

2.2.3 Rehukäyttö

Myös rehupuolella korostiin jälleen lajikekehityksen tarvetta. Markkinoille tulisi saada nykyistä proteiinipitoisempi lajikkeita. Valkuaista tukea auttoituus tulisi saada käyttöön myös rehuraakaviljan
hinnoittelun. Mallas- ja tärkkelysohroin viljelyssä tähdätään matalaan valkuaiseen, mutta rehuohran kohdalla korkeampaan valkuispitoisuuteen voitaisiin kannustaa.

2.2. Elintarvikekäyttö
Työpajassa havaittiin kuluttajiin suuntautuvan tiedotuksen tarve; valtaosa kuluttajista ei ole tiedostanut, kuinka suuri osa proteiiniista tulee viljoista. Viljojen kohdalla viestitään yleensä lähinnä kuitupitoisuudesta ja hiilihydraateista, ei juurikaan proteiinipitoisuudesta. Nyt tarvittaisiinkin tiedotusta viljoihin proteiinilähteitä. Toisaalta kun tarkastellaan kasvihajot visible proteiinilähteitä ne sisältävät usein myös ravintokuitua ja siksi näitä raaka-aineet ovat lähtökohtaisesti ravitsemukseellisesti hyviä. Tiedotusta tulisi tehdä siitä, että ympäristövaikutuksia on vältettävä käyttämällä korkeampia valkuaispitoisuuksia huoneistotuotteissa.

2.2.2 Elintarvikekäyttö
Työpajassa havaittiin kuluttajiin suuntautuvan tiedotuksen tarve; valtaosa kuluttajista ei ole tiedostanut, kuinka suuri osa proteiiniista tulee viljoista. Viljojen kohdalla viestitään yleensä lähinnä kuitupitoisuudesta ja hiilihydraateista, ei juurikaan proteiinipitoisuudesta. Nyt tarvittaisiinkin tiedotusta viljoihin proteiinilähteitä. Toisaalta kun tarkastellaan kasvihajot visible proteiinilähteitä ne sisältävät usein myös ravintokuitua ja siksi näitä raaka-aineet ovat lähtökohtaisesti ravitsemukseellisesti hyviä. Tiedotusta tulisi tehdä siitä, että ympäristövaikutuksia on vältettävä käyttämällä korkeampia valkuaispitoisuuksia huoneistotuotteissa.

Kasviproteiinien kulutuksen kasvu ei ole vähentänyt lihan kulutusta. Merkittävä osa suomalaisista saa proteiinia yli oman tarpeen, mikä on haaste ympäristölle. Ei siis ole tarvetta proteiiniin saannin lisäämiseen, vaan kulutus on sääristettävä myös kasvien korvaamiseksi teollisillä proteiinilähteillä. Myös tässä mielessä riittävä tiedotus ja koulutus ovat tärkeässä roolissa. Tähtäimenä tulisi olla yleinen “kuluttajafiiliksen” nosto ja vatsaystävien sekä terveellisyyden korostaminen.

proteiinin tuottajien ja käyttäjien välisen yhteistyön parantaminen, mallitilat sekä neuvonnan ja koulutuksen lisääminen.

3.2 Toimenpide-ehdotukset syksyn 2018 työpajojen pohjalta

3.2.1 Alkutuotanto

Neuvonnan ja koulutuksen lisäksi tutkimusta on tehtävä tietopuutteiden täyttämiseksi. Viljelyjärjestelmäkuviot vaativat syvällisempää tietoa; miten palkokasvit sopivat viljelyjärjestelyihin. Seurantaa ja tiedonkeruuta tulee tehdä tilatasolta saakka. Tarvittaisiinkin rahoitusta perustutkimukseseen.

3.2.2 Rehu- ja elintarvikekäyttö

Alkutuotannon toimintatapojen kehitystarpeet nousivat esille tiekartan työpajoissa. Osaamisen ja tiedon puute tunnistettiin esteeksi öljykasvien viljelyn yleistymiselle, koska öljykasvit ovat luonteeltaan vaativia erikoiskasveja. **Öljykasvien viljelyä tulisi edistää tiedottamalla viljelyteknikasta.**

4.2 Toimenpide-ehdotukset syksyn 2018 työpajojen pohjalta

Tällä hetkellä Suomessa tuotettu öljykasvipinta-ala ei riitä kattamaan kysyntää. Suomeen tuodaan sekä rapsipuristetta että -öljyä. Tavoitteena on öljykasvien viljelyalan tuplaaminen ja vakiinnuttaminen nykyisistä 50–60 000 ha noin 100 000 hehtaariin. Pinta-ala tavoite ei ole realistinen hyvän viljelykierron ja viljelykäytäntöjen samanaikaisessa saavuttamisessa.

4.2.1 Alkutuotanto

Kevätöljykasvien peittaukseen käytettävien neonikotinoidien käyttökielto ja poikkeusluvan haku vuodeksi kerrallaan ja korvaavien valmisteiden puute, aiheuttaa epävarmuutta kaikille öljykasviketjun toimijoille. Rypsin ja rapsin runsas kasvinsuojelutarve vähentää viljelijöille, etenkin kyseiset kasvit mukaan viljelykiertoon. Öljykasvit eivät ole kasvinsuojelutarpeen kannalta välttämättä sivutoimisille viljelijöille.

Tutkimusta tarvitaan tuholaisista ja öljykasvien taudeista. Uusi kartoitus tulisi tehdä satotasoa ja öljykasviketjun toimijoihin. Suosituksena on, että järjestetään viikoittain yhteistyöönotto, missä keskustellaan satotasoa ja alentavista tekijöistä, viljelyteknikasta ja siitä miten kannattaa lähemmäs lajikkeiden satopotentiaalia ja vähennetyä satapotentialin ja nykyisen saavutetun sadon eroa.

4.2.2 Rehukäyttö

5. Nurmet

5.1 Tiekartan (2015) toimenpide-ehdotukset

Raportissa todettiin, että nurmisäiliörehun jatkojalostus sioille sopivaksi rehuksi. Nurmi voisi myös auttaa muille proteiinilähteillä, kuten herneelle ja härkäpavulle. Lisäksi tuotiin esiin nurmen prosessointimenetelmien kehittämisen mahdollisuudet, kuten esimerkiksi nurmen kuivaaminen, juhavanen ja pelletointi tai fermentointi.

Mahdollisuutena nähtiin myös nurmisäiliöyön laajentaminen, kuten nurmisäiliörehun jatkojalostus sioille sopivaksi rehuksi. Nurmi voisi myös auttaa muille proteiinilähteillä, kuten herneelle ja härkäpavulle. Lisäksi tuotiin esiin nurmen prosessointimenetelmien kehittämisen mahdollisuudet, kuten esimerkiksi nurmen kuivaaminen, juhavanen ja pelletointi tai fermentointi.

Keskeisinä toimenpiteinä ehdotettiin nurmen potentiaalin tarkempaa selvittämistä ja tarvittavan jalostuksen ja prosessointimenetelmien kehittämistä. On löydettävä tehokkaimmat keinot, jotta mahdollisuus nostaa nurmien satotasoja ja käyttää nurmirehuja laajemmin kuin märehtijöiden ruokinnassa, kehittää nurmiperäisiä uusia jalosteluja ja käyttää härkäpavulla ja muita proteiinilähteitä (kuten nurmea) karkearehuna erityisesti Pohjois-Suomessa.

5.2 Toimenpide-ehdotukset syksyn 2018 työpajojen pohjalta

Nurmen tai säilönumren tuotanto, jalostus ja käyttö uusilla tavoilla vaativat huomattavan tutkimuspanosta ja lupaavampien teknologien pilottointi- ja demonstraatiohankkeita. Tämän edellytyksenä on riittävä rahoitus. Nurmen mahdollisuksia ei täysin yleisesti tunnet, joten on tärkeää tuoda nurmen potentiaali esiin sekä kotimaisille (etken MMM, Business Finland ja Suomen Akatemia) että kansainvälisille rahoituspanoista, jotta mahdollisuudet nostaa nurmen satotasoja ja käyttää nurmirehuja laajemmin kuin märehtijöiden ruokinnassa, kehittää nurmiperäisiä uusia jalosteluja ja käyttää härkäpavulla ja muita proteiinilähteitä (kuten nurmea) karkearehuna erityisesti Pohjois-Suomessa.

“nurmiseminaari”, viestintä tiloille nurmen viljelyn ja käytön uusista mahdollisuuksista sekä tutkijoiden ja muiden toimijoiden aktiivinen vuorovaikutus arvoketjun yritysten kanssa.

5.2.1 Alkutuotanto

5.2.1 Alkutuotanto

5.2.2 Rehukäyttö

5.2.3 Elintarvikekäyttö

Nurmen tai sen komponenttien elintarvikekäyttö on vielä tulevaisuutta. Kasviproteiinin kysyntä kasvaa, ja korkealaatuiselle elintarvikeproteiinille on kysyntää. Nurmiproteiini elintarvikekäyttöön voi myös olla rehun

12

6. **Hyönteiset ja solumaatalous**

6.1 **Tiekartan (2015) toimenpide-ehdotukset**

Uudet proteiinilähteet, kuten **hyönteiset (toukat, aikuiset)**, sienet, levät ja mikrobisuomuruotollontoon pohjaavat yksisoluproteiinit nähtiin tulevaisuuden proteiinilähteinä, mikäli niiden tuottamisen kustannukset saadaan painettua alas. Näissä etuina on erittäin voimakas biomassan kasvu ja mahdollisuus käyttää mm. sivuvirtoja tuotannon kalojen ravinnontavoilla (rehuna). Samalla kuitenkin todettiin, että niiden tuotannosta tarvitaan enemmän tietoa ennen kuin niiden tuotantokäytöstä voidaan tehdä tarkempija johtopäätöksiä.

6.2 **Toimenpide-ehdotukset syksyn 2018 työpajojen pohjalta**

Tämän teeman osalta syksyn 2018 työpajassa keskityttiin hyönteisalallaan, johtuen viime aikoina suurinäkökulmaan yhteiskunnalliseen ja sosiaaliseen tapahtumasta, joka on vauhdittanut hyönteistuotannosta ja kehitystyötä sekä liiketoimintaa avuksi Suomessa. Tämän lisäksi keskusteltiin mikrobien eli ns. solumaatalouden hyödyntämisestä ruokaraaka-aineiden tuotannossa.

6.2.1 **Alkutuotanto**

Syksyn 2018 työpajassa todettiin, että sääädöspäristön muutoksista, joka on vauhdittanut hyönteistuotannosta ja kehitystyötä sekä liiketoimintaa Suomessa. Tämän lisäksi keskusteltiin mikrobien eli ns. solumaatalouden hyödyntämisestä ruokaraaka-aineiden tuotannossa.
EU:ssa on avattu keskustelu tunnistetuista haasteista ja ratkaisuista sisältäen pohdinta:

- erote tunnetaan

- Suomessa on tuottu perinteistä kananrehua. Suomessa on edelläkävijä. Sivuviirtojen käyttöä rehuna on silti kehitettävää edelleen. Tarvitaan tutkimusta hyönteistalouden ekotehokkuudesta; ravinteiden käyttöä rek篁taan.

- Sivuviirtojen käyttöä rehuna on silti kehitettävää edelleen. Tarvitaan tutkimusta hyönteistalouden ekotehokkuudesta; ravinteiden käytön tehokkuudesta eri ruokintatavojen ja rehuaihtoehtoilla.

- Suomella todettiin olevan etuja, joka perustee hyönteistuotantoa. Viileä ilmasto vähentää hyönteiskasvattamisen ja sivuviirtojen hyödyntämiseen, ja hyönteiset voivat olla rehuna- ja energian käytön sekä ilmaston ja rehuaihtoehtoilla.

6.2.2. Rehukäyttö

6.2.3 Elintarvikekäyttö

6.2.3 Elintarvikekäyttö

6.2.3 Elintarvikekäyttö

7. Vesitalous: kalatalous

7.1 Tiekartan (2015) toimenpide-ehdotukset

Vuoden 2015 proteiinitiekartassa painottuivat erilaiset viljelykasvien proteiinit, ja kalat ja vesitalous olivat vain pienessä roolissa. Lisäksi kalajoita ja muita kalastustuotteita hyödynnetään erityisesti renkaat- ja ravintoaineidensa korvaajina sekä hyönteisen eläinten ravintoa ja eläinten terveysvaikutuksia pitäisi tutkia enemmän.

7.2 Toimenpide-ehdotukset syksyn 2018 työpajojen pohjalta

Syksyn 2018 työpajassa pohdittiin kalaelinkeinon nykyistä tilannetta ja mahdollisuuksia nostaa toimialan merkitystä Suomen proteiiniamavaraisuuden nostajanä. Työpajassa esille nousivat uusien toimenpide-ehdotusten lisäksi tässä tekstissä on huomioitu Suomen kalatalouden toimijoiden yhdeksä julkaisemat tavoitteet uudelle hallitusohjelmakaudelle, sillä näiden tavoitteiden voidaan katsoa edustavan laajasti niitä haasteita ja tarpeita, joita kalasektorin elinvoimaisuuden ylläpitämisessä ja parantamisessa nähdään ollevan [12]. Kalatalouden tavoitteena on tuottaa ja luoda työ, toimeentuloa ja vientituloja. Tämän saavuttamiseksi pitäisi mm. laatia toimintasuunnitelma uusiutuvien luonnonvarojen kehittämiseksi, ja nostaa kalatalon investointitukeja valmistavan elantervikkeita.
erinomainen. Kansainvälisesti verraten Suomen valttikortteja ovat edelleen hyvä maine, puhtaat vesistöt ja luonto, ja kestävästi hyödynnetty kalakannat.

7.2.3 Rehukäyttö

7.2.2 Elintarvikekäyttö
Suomalaiset haluavat syödä kotimaista kalaa, mutta silti suurin osa kulutuksesta suuntautuu tuontikalaan. Kotimaiseen kalavan osuus kokonaiskulutuksesta on vain noin viidesosa. Kalan kulutus lisääntyy, mutta...
tuontikalan avulla. Kotimaisia kalajoja tulisi syödä laajemmin ja kalan käyttöä lisätä, jotta kalaketju pysyy hengissä. Lohikala on helppo käyttää, joten on hyvä, että tarjolla on kotimainen kirjolohi. **Kotimaisen kalan saatavuuden varmistamiseksi on tärkeää varmistaa, että kotimainen alkuutuanto, eli kaupallinen kalastus ja kasvatus, pysyvät elinoaimisina.**

Lihan syömisen korvaaminen kotimaisella kestävästi kalastetulla tai kasvatetulla kalalla olisi sekä ympäristön ja ihmisten ravitsemuksen kannalta myönteinen muutos. Tällä hetkellä suomalaiset kuluttajat eivät ole vaatineet kotimaisen kalan kasvatuksen ja kulutuksen lisäämistä erityisesti kotimaiselle lihan korvaukseen. Kotimaisen kalan tuotteiden kuluttajien hengellisyyttä voidaan parantaa, jos voidaan merkitä, että kotimaisen kalan kulutus vahvistaa kotimaisia eläinperäisiä proteiinilähteitä ja lisää keskustelua niiden mahdollisuuksiin ja hyötekkisyyksiin.

Kotimaisten kala- ja entisasteliominaisuuksien käyttöä

8. **Yhteenveto ja johtopäätökset**

Markkinoille tuloa sekä proteiinikasvien viljelyalan huomattavaa kasvua ja satosasojen nousua. Vaikka tällä hetkellä viljelykasvien osalta painopiste on rehukäytössä, tulevaisuuden kannalta - IPCC:n ilmastoraportin suositusten mukaisesti - Suomen pitää myös tehdä toimenpiteitä viljelykasvien laaja-alaisen elintarvikekäytön lisäämiseksi.

Toimenpide-hdotukset on koostettu alle siten, että puitavien kasvien toimenpide-hdotukset on listattu yhdessä, koska ehdotukset olivat pitkälti yhteneviä. Toimenpiteet liittyvät mainittuun muihin näkökulmiin ja siihen osaan, että IPCC:n ilmastoraportin suosituksen mukaisesti Suomessakin on tehtävä monia toimenpiteitä viljelykasvien laaja-alaisen elintarvikekäytön lisäämiseksi.

Syksyn 2018 työpajoissa käsiteltiin proteiiniomavaraisuutta ja pyrittiin löytämään toimenpiteitä sen nostamiseksi viljelykasvien osalta painopiste on rehukäytössä, tulevaisuuden kannalta - IPCC:n ilmastoraportin suositusten mukaisesti - Suomen pitää myös tehdä toimenpiteitä viljelykasvien laaja-alaisen elintarvikekäytön lisäämiseksi.

Syksyn 2018 työpajoissa käsiteltiin proteiiniomavaraisuutta ja pyrittiin löytämään toimenpiteitä sen nostamiseksi viljelykasvien osalta painopiste on rehukäytössä, tulevaisuuden kannalta - IPCC:n ilmastoraportin suositusten mukaisesti - Suomen pitää myös tehdä toimenpiteitä viljelykasvien laaja-alaisen elintarvikekäytön lisäämiseksi.

Viljelyvarmuuden ja satoisuuden kehittäminen, proteiinipitoisuuden kasvattaminen jalostuksen keinoin sekä koko ketjun yhteistyön edistäminen, ja erityisesti alkuûtajien kouluttaminen nousivat selkeiksi tulevaisuuden toimenpiteiksi.

Erityisesti neuvonta ja koulutus viljelytekniikoiden ja uusien kasvien viljelyn aloittamisen osalta on ensiarvioinen tärkeää. Sen lisäksi proteiinikasvien sopimusviljelyn kehittäminen on tärkeää. Neuvontaa ja sopimustoimintaa erityisesti elintarvikelaatuiseen tuotantoon pitäisi toteuttaa enemmän.

Ravitsemuksellisten ominaisuuksien ja haitta-aineiden (myös virhemakua tuovat yhdisteet) hallinta nousi esiin sekä rehukäytön ollessa. Toimenpiteitä olisi toteutettava sekä jalostuksen että prosessointiratkaisujen kehittämisen osalta. Rehukäytön olaisa olisi syytä toteuttaa systemaattinen vertailu eri viljojen, palkokasvien, hyönteisten ja mikrobiproteiinit olaisi, jotta saataisiin ruokakäytöseinvertailukelpoista tutkittua tietoa.

Ingredientitieteellisen ominaisuuksien ja haitta-aineiden (myös virhemakua tuovat yhdisteet) hallinta nousi esiin sekä rehukäytön olaisa. Toimenpiteitä olisi toteutettava sekä jalostuksen että prosessointiratkaisujen kehittämisen osalta. Rehukäytön olaisa olisi syytä toteuttaa systemaattinen vertailu eri viljojen, palkokasvien, hyönteisten ja mikrobiproteiinit olaisi, jotta saataisiin ruokakäytöseinvertailukelpoista tutkittua tietoa.

Ingredienteilostuksen kasvattaminen Suomessa olisi tärkeää, erityisesti kun pyritään edistämään kasvimiateriaalin käyttöä elintarvikekäytössä. Tällä hetkellä ingredienteilostuksissa Suomessa on vähäistä, volymit pienet, ja teollisuus joutuu prosessoimaan ja tuomaan raaka-aineita ulkomailta.

Puitavien kasvien osalta tutkimustoimintaa on toteutettu, mutta työtä on vielä tehtävä koko ketjun osalta. Esimerkiksi tutkimus ja tiedon kerääminen kotimaisten (soijaa korvaavien) kasvien rehukäytöstä ja rehureseptiikan optimointi on oleellista. Ruokakäytön olaisa laatumittareiden kehittäminen ja aistittavan laadun haasteiden ratkaiseminen on oleellista.

Proteiinityöryhmän perustaminen tiedon jakamiseksi ja yhteistyön edistämiseksi nousi esiin kaikissa työpajoissa, ja valmistelut onkkin proteiiniformumin ja -yhdistyksen perustaminen proteiiniäsidoiden edistämiseksi. Viljalan yhteistyöryhmä VYR ry:n alle perustetaan proteiinityöryhmä, jonka tavoitteena ovat viljat, palko- ja öljykasvit sekä mahdollisesti myös nurmet.

Suomen pitää olla aktiivinen Euroopan komission työssä EU:n proteiiniomavaraisuuden nostamiseksi [2]. Suomessa on omat erityispiirteensä, mutta on tärkeää näyttää komissiolle Suomessa toteutettuja toimenpiteitä ja suunnitelmia, jotta Suomen uskottavuus toimijana kasvaa ja osaaminen saa näkyvyyttä. Suomen toimenpiteet voivat toimia mallina myös muille EU-maille.
Nurmien, vesitalouden, hyönteistuotannon ja solumaatalouden osalta yhteisiä toimenpidekokonaisuuksia olivat:

- Näissä teemoissa, etenkin nurmi, hyönteistuotannon ja solumaatalouden osalta, tutkimustarpeet korostuivat enemmän suhteessa puitaviin kasveihin.
- Nurmituotannossa sekä rehu (yksimahaiset) että elintarvikekäytön potentiaali vaatii vielä tutkimusta ja demonstraatiohankkeiden toteuttamista esimerkiksi nurmikasvien lajikkeiden, viljelyn ja tuotannon skaalauksen osalta. Suomella on kuitenkin paljon osaamista ja potentiaalia nurmituotannossa, ja nurmien osuus hiilineutraalin ruokaketjun kehittämisessä voi olla merkittävä. Nurmituotannon osalta koulutus ja neuvonta viljelijöitä varten tämän osalta on tärkeää muun muassa viljelykierron osalta, yhteistyön luomiseksi kasvinviljely- ja kotieläintilojen välillä sekä toimijaverkoston rakentamiseksi.
- Lainsäädännön ja erityisesti uuselintarvikeasetuksen ymmärtäminen ja seuraaminen ovat ensi arvoisen tärkeitä erityisesti hyönteistuotannon ja solumaatalouden osalta. On ymmärrettävä, että Euroopan elintarvikeeturvallisuus -viranomaisen EFSA:n prosessit ovat aikaa vieviä ja nostavat kynnystä liiketoimintaa-avauksille. Toisaalta liiketaloudelliset mahdollisuudet voivat pitkällä tähtäimellä olla huomattavia.

Lähteet

Liitteet

Liite 1. Työpajojen osallistujat

<table>
<thead>
<tr>
<th>Viljat</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Auramo</td>
<td>Päivi</td>
<td>Lantmännäen Agro</td>
</tr>
<tr>
<td>2. Heinonen</td>
<td>Ulla</td>
<td>JAMK</td>
</tr>
<tr>
<td>3. Hietaniemi</td>
<td>Veli</td>
<td>Luke</td>
</tr>
<tr>
<td>4. Holopainen-Mantila</td>
<td>Ulla</td>
<td>VTT</td>
</tr>
<tr>
<td>5. Jaakkola</td>
<td>Lasse</td>
<td>Myllyn Paras</td>
</tr>
<tr>
<td>6. Kerminen</td>
<td>Anne</td>
<td>Yara</td>
</tr>
<tr>
<td>8. Liespuu</td>
<td>Juha</td>
<td>Yara</td>
</tr>
<tr>
<td>9. Lindborg</td>
<td>Kaisa</td>
<td>Turun yliopisto</td>
</tr>
<tr>
<td>10. Marttila</td>
<td>Taneli</td>
<td>A-Rehu</td>
</tr>
<tr>
<td>11. Viilppula</td>
<td>Katarina</td>
<td>VYR</td>
</tr>
<tr>
<td>12. Mäittälä</td>
<td>Anne</td>
<td>Evira</td>
</tr>
<tr>
<td>14. Nisov</td>
<td>Anni</td>
<td>VTT</td>
</tr>
<tr>
<td>15. Nordlund</td>
<td>Emilia</td>
<td>VTT</td>
</tr>
<tr>
<td>16. Ritala</td>
<td>Anneli</td>
<td>VTT</td>
</tr>
<tr>
<td>17. Saaristo</td>
<td>Eeva</td>
<td>MMM</td>
</tr>
<tr>
<td>18. Schulman</td>
<td>Max</td>
<td>MTK</td>
</tr>
<tr>
<td>19. Sontag-Strohm</td>
<td>Tuula</td>
<td>Helsingin yliopisto</td>
</tr>
<tr>
<td>20. Tähtinen</td>
<td>Päivi</td>
<td>VYR</td>
</tr>
<tr>
<td>21. Valkonen</td>
<td>Niina</td>
<td>Valio</td>
</tr>
<tr>
<td>22. Virolainen</td>
<td>Jukka</td>
<td>MMM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Palkokasvit</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aalto</td>
<td>Marita</td>
<td>MMM</td>
</tr>
<tr>
<td>2. Hakala</td>
<td>Terhi</td>
<td>VTT</td>
</tr>
<tr>
<td>3. Hämäläinen</td>
<td>Katja</td>
<td>Boreal Kasvinjalostus</td>
</tr>
<tr>
<td>5. Kaikkonen</td>
<td>Kirsi</td>
<td>Suomen Viljava</td>
</tr>
<tr>
<td>6. Katina</td>
<td>Kati</td>
<td>Helsingin yliopisto</td>
</tr>
<tr>
<td>8. Kommeri</td>
<td>Ulla</td>
<td>Boreal Kasvinjalostus</td>
</tr>
<tr>
<td>9. Lassi</td>
<td>Kati</td>
<td>Avena</td>
</tr>
<tr>
<td>10. Marttila</td>
<td>Taneli</td>
<td>A-Rehu</td>
</tr>
<tr>
<td>11. Viilppula</td>
<td>Katarina</td>
<td>VYR</td>
</tr>
<tr>
<td>12. Mikola</td>
<td>Markku</td>
<td>Fazer</td>
</tr>
<tr>
<td>14. Oillila</td>
<td>Tarja</td>
<td>Versofood</td>
</tr>
<tr>
<td>15. Paakki</td>
<td>Ossi</td>
<td>Finnamyl</td>
</tr>
<tr>
<td>16. Peitonenen</td>
<td>Sari</td>
<td>Pro Agria Keskusten liitto</td>
</tr>
<tr>
<td>17. Pihlanto</td>
<td>Anne</td>
<td>Luke</td>
</tr>
</tbody>
</table>
18. Rokka Susanna Luke
19. Silventoinen Pia VTT
20. Sontag-Strohm Tuula Helsingin yliopisto
21. Stoddard Frederick Helsingin yliopisto fasilitaattori
22. Tapiola Titta Luke
23. Valkonen Niina Valio
24. Virolainen Jukka MMM

Öljykasvit

1. Hakala Terhi VTT fasilitaattori
2. Hämäläinen Katja Boreal Kasvinjalostus
3. Kerminen Anne Yara
5. Kommeri Ulla Boreal
6. Lantto Raija VTT
7. Lassi Kati Avena
8. Vilppula Katarina VYR
9. Nyholm Laura Valio
10. Peltonen Sari ProAgria Keskusten liitto
11. Pihlanto Anne Luke
12. Virolainen Jukka MMM

Nurmet

1. Härkkä Katja Valio
2. Kerminen Anne Yara Suomi
3. Mantila Juha Huoltovarmuuskeskus
4. Vilppula Katarina VYR
5. Niemeläinen Oiva Luke
7. Saaristo Eeva MMM
8. Seppänen Mervi Helsingin yliopisto fasilitaattori
9. Siika-aho Matti VTT
10. Virolainen Jukka MMM

Hyönteiset ja solumaatalous

1. Juvonen Eeva-Liisa HAMK
2. Keskitalo Marjo Luke
3. Maljanen Netta-Leena Helsingin yliopisto fasilitaattori
5. Vilppula Katarina VYR
6. Mikola Markku Fazer
8. Parviainen Tuure VTT
9. Pöyri Saara Valio
11. Tapiola Titta Luke
12. Taulavuori Timo Puutarhaliitto
13. Tuomisto Hanna Helsingin yliopisto
Vesitalous: kalatalous

2. Honkapää Kaisu VTT *fasilitaattori*
3. Häkkä Katja Valio
4. Kivijärvi Saila VTT
5. Lerche Olof Raisio
6. Vilppula Katariina VYR
7. Nisov Anni VTT
8. Ruokolainen Janne Päijänne Leader
9. Toivonen Jarkko Novago